
DM507 Algoritmer og datastrukturer

For̊ar 2012

Projekt, del I

Institut for matematik og datalogi
Syddansk Universitet

20. februar, 2012

Dette projekt udleveres i tre dele. Hver del har sin deadline, s̊aledes at afleveringerne, og
dermed arbejdet, strækkes over hele semesteret. Deadline for del I er mandag den 19. marts.
Projektet skal som udgangspunkt besvares i grupper af størrelse to. Individuelle besvarelser
er tilladt, men tilskyndes ikke.

Mål

Det samlede projekt beskæftiger sig med inversioner, og med sorteringsmetoder hvis køretid
afhænger af antallet af inversioner i input.

Hovedm̊alet for del I af projektet er at lave en algoritme, som effektivt kan tælle antallet
af inversioner i et array.

Inversioner

En inversion i et array A af tal er et par som ikke st̊ar i sorteret orden. I dette projekt
defineres sorteret som stigende (ikke-faldende) orden, og en inversion er mere præcist et
par (i, j) hvor i < j og A[i] > A[j]. Antal inversioner i A er antallet af par (i, j) som udgør
en inversion. Da der er

(
n
2

)
= n(n− 1)/2 par, er dette det maksimale antal inversioner i et

array af længde n. Et array af længde under to har ingen inversioner.

Eksempler: et sorteret array har nul inversioner, et omvendt sorteret array har det maksi-
male antal inversioner n(n− 1)/2, og nedenst̊aende array

1



3 2 1 6 6 10 5 12 11 8 8 15 9 13 14 16

har 19 inversioner, nemlig de 19 indikerede par.

Algoritmer til at tælle inversioner i et array

En oplagt algoritme til at finde antallet af inversioner i et array bruger en dobbelt for-løkke,
som tester alle par (i, j) (dvs. (i, j) for 1 ≤ i ≤ n−1 og i+1 ≤ j ≤ n), og derfor tager Θ(n2)
tid. I del I af projektet skal vi udvikle en algoritme, som tager Θ(n log n) tid. Algoritmen
er en udvidelse af MergeSort algoritmen, og er baseret p̊a følgende to observationer:

1. Hvis et (del-)array A[p..r] opdeles i to dele L = A[p..q] og R = A[(q+ 1)..r] da er det
samlede antal inversioner i A[p..r] lig med x + y + z, hvor:

• x er antallet af inversioner i L

• y er antallet af inversioner i R

• z er antallet af inversioner mellem L og R, dvs. inversioner (i, j) med p ≤ i ≤ q
og q + 1 ≤ j ≤ r

som illustreret i følgende figur, hvor inversionerne i L og i R alle er vist med gr̊a
kurver, mens inversionerne mellem L og R er vist med sorte kurver:

3 2 1 6 6 10 5 12 11 8 8 15 9 13 14 16

L R

p q r

2. Tallet z ændres ikke selv om L og R hver især sorteres, som illustreret i følgende
figur:

1 2 3 5 6 6 10 12 8 8 9 11 13 14 15 16

L R

p q r

2



Opgaver

1. Implementer den simple Θ(n2) algoritme (baseret p̊a en dobbelt for-løkke) til at
finde antallet af inversioner i et array. Implementationen skal ligge i en fil, der
hedder SimpleInv.java. Den skal tage sit input fra en tekstfil, der indeholder en
række heltal, hver adskilt af whitespace (brug f.eks. klassen java.util.Scanner og
metoden nextInt() herfra til at parse input). Den skal tage inputfilens navn fra
kommandolinien, s̊adan at programmet efter kompilering kan kaldes s̊aledes: java

SimpleInv inputfilnavn. Den skal skrive output (antal inversioner i input) p̊a
skærmen. Der skal udskrives et heltal og intet andet (da de afleverede programmer
vil blive afprøvet med automatiserede tests). Et antal eksempelfiler med input i
ovenst̊aende format findes p̊a kursets hjemmeside.

2. Implementer MergeSort efter pseudo-koden i afsnit 2.3 i Cormen et al. Som ∞ kan
bruges værdien Integer.MAX VALUE fra klassen Integer. Det må her og i resten af
projektet antages, at denne værdi ikke forekommer i input. Implementationen skal
ligge i en fil der hedder MergeSort.java. Den skal tage sit input fra en tekstfil, der
indeholder en række heltal, hver adskilt af whitespace. Den skal tage inputfilens navn
fra kommandolinien, og skal skrive output p̊a skærmen (som de sorterede tal, hver
adskilt af whitespace, og intet andet).

3. Beskriv en udvidelse af metoden Merge(A, p, q, r) fra side 31 i Cormen et al. som,
udover at flette indholdet af to sorterede del-arrays L = A[p..q] og R = A[(q + 1)..r]
til ét sorteret array A[p..r], ogs̊a beregner tallet z. [Hint: Lad metoden have en
tæller zCounter, og vedligehold følgende invariant: Ved starten af enhver iteration af
for-løkken svarende til linie 12 i pseudo-koden side 31 i Cormen et al. er zCounter
lig z minus antallet af inversioner (s, t) i A[p..r] med endepunkter i A[(p + i− 1)..q]
og A[(q + j)..r] (dvs. inversioner (s, t) med p + i− 1 ≤ s ≤ q og q + j ≤ t ≤ r). Her
er i og j fra pseudo-koden i Cormen et al. side 31.]

4. Argumenter for korrekthed og køretid af din udvidede metode. Mht. korrekthed er
det nok at argumentere for, at z beregnes rigtigt (da argumentet for at der flettes
korrekt, vil svare helt til det i bogen).

5. Beskriv en divide-and-conquer algoritme baseret p̊a MergeSort som finder antallet
af inversioner i et array i Θ(n log n) tid. [Hint: lad algoritmen som input tage et
del-array A[p..r], som den b̊ade sorterer og returnerer antallet af inversioner i, og lav
algoritmen rekursiv i stil med MergeSort ved at bruge de to observationer ovenfor,
samt den udvidede Merge metode.]

6. Argumenter for korrekthed og køretid af din algoritme.

7. Implementer din Θ(n log n) algoritme baseret p̊a MergeSort til at finde antallet af
inversioner i et array. Implementationen skal ligge i en fil der hedder FastInv.java.

3



Den skal tage sit input fra en tekstfil, der indeholder en række heltal, hver adskilt
af whitespace. Den skal tage inputfilens navn fra kommandolinien, og skal skrive
output (antal inversioner i input, og intet andet) p̊a skærmen.

Formalia

Lav en rapport, som indeholder dine svar p̊a opgaverne 1–7 ovenfor. Koden fra opgaverne 1,
2 og 7 skal være passende kommenteret, skal inkluderes i rapporten som bilag, og eventuelle
ikke-trivielle aspekter af implementeringen skal diskuteres i rapportens hoveddel. Der
skal afleveres rapporten i pdf-format, samt de tre Java-programmer SimpleInv.java,
MergeSort.java og FastInv.java som separate filer (udover at de er med p̊a tryk i
rapporten). Husk at skrive navnene p̊a personerne i gruppen p̊a forsiden af rapporten.

Materialet afleveres i Blackboard med værktøjet “SDU Assignment” (ikke at forveksle med
“Assignment hand in”, som er et andet afleveringsværktøj i Blackboard). Det kan findes
under “Tools” i menuen i kursussiden i Blackboard. Menuen findes ved at klikke p̊a det
lille “dobbelt-firkant”-ikon i øverste halvdel af venstre kant af kursussiden i Blackboard
(om nødvendigt maksimer det fremkomne vindue).

Aflever materialet senest:

Mandag den 19. marts, 2012, kl. 23:59.

4


