DMb507 Algoritmer og datastrukturer
Forar 2012

Projekt, del II

Institut for matematik og datalogi
Syddansk Universitet

15. marts, 2012

Dette projekt udleveres i tre dele. Hver del har sin deadline, saledes at
afleveringerne, og dermed arbejdet, straekkes over hele semesteret. Deadline
for del II er onsdag den 25. april. Projektet skal som udgangspunkt besvares
i grupper af stgrrelse to. Individuelle besvarelser er tilladt, men tilskyndes
ikke.

Mal

Malet for del II af projektet er at implementere rgd-sorte tracer, samt bevise
en gvre graense for maengden af rebalancering. Med hensyn til updates skal
der kun ses pa indsaettelser, ikke sletninger.

Rod-sorte traeer

R@d-sorte traeer er grundigt beskrevet i Cormen et al., kapitel 13. Bemeerk
at pseudo-koden i dette kapitel er baseret pa en implementation med en
sentinel-knude T'.nil til at repraesentere traeets NIL-pointere (bladene samt
rodens foraelder), som illustreret i Figur 13.1 (b) pa side 310. Denne knude
er altid sort. Vi antager ogsa denne implementation her.

Opgaver

Opgave 1

Der skal laves en Java-implementation, baseret pa bogens pseudo-kode, af
rgd-sorte trezeer, som indeholder metoderne SEARCH (pseudo-kode side 290
eller 291, skal justeres til at bruge 7T'.nil i stedet for NIL), INSERT (pseudo-
kode side 315 (og siderne 316 og 313)), samt INORDERTRAVERSAL (pseudo-



kode side 288, skal justeres til at bruge T'.nil i stedet for NIL)). Der skal ikke
implementeres DELETE eller yderligere metoder.

Det antages at nggler er af typen int (sa man ikke behgver bruge f.eks.
generics i Java), og at elementer blot bestar af nggler (der er ikke yderligere
data tilknyttet en nggle). Dette vil vaere tilstraekkeligt for den senere anven-
delse i del III. Implementationen skal veere i form af en Java-klasse, som kan
bruges af andre programmer. Klassen skal hedde RBT, og skal implementere
flg. interface:

public interface RBTree {
public boolean search(int k);
public void insert(int k);
public int[] inorderTraversal();
public boolean isRedBlack();

Metoden search(k) returnerer blot en boolean som angiver om ngglen k
er i traeet. Metoden insert(k) indssetter ngglen k i traeet. Metoden
inorderTraversal () returnerer en kopi af treeets elementer i et array (i
sorteret orden) fremfor at printe dem pa skeermen som i bogens pseudo-
kode. Metoden isRedBlack() checker om et givet RBTree overholder (de
vigtigste af) kravene 1-5 pa side 308. Denne metode er bla. anvendelig til
fejlfinding under implementationsprocessen. Metoden skal baseres pa algo-
ritmen beskrevet i pseudo-kode i appendikset nedenfor. Man skal ikke bevise
noget om korrekthed eller kgretid for denne algoritme.

Opgave 2

En indsaettelse bestar af en sggning og indsaettelse af ny knude (linie 1-16 i
pseudo-kode side 315), samt en efterfolgende rebalancering af traeet (pseudo-
koden side 316).

Vi gnsker i denne opgave at bevise, at hvis man starter med et tomt rgd-sort
tree og laver n indseettelser, da er den samlede maengde rebalanceringsarbej-
de (dvs. arbejde lavet af pseudo-koden side 316 (og 313)) i alt O(n). Denne
viden vil vise sig brugbar i del III af projektet. Bemeerk at ovenstaende
gvre greense er steerkere end den simple vurdering at n indsaettelser hver
hgjst kan lave rebalanceringsarbejde svarende til stien mod roden, hvilket
blot giver en gvre graense pa O(nlogn).

For et rod-sort tree T lader vi ¢(T) veere antallet af knuder i treeet som er
sorte og har to rgde bgrn. For eksempel er ¢(T) = 1 for treeet i Figur 13.1
i Cormen et al. (side 310). Vi skal se pa hvordan ¢ (7T') udvikler sig, nar T
@ndrer form under indsaettelser og efterfolgende rebalanceringer.



Som det fremgar af diskussionen i afsnit 13.3 af Cormen et al. vil while-
lgkken i pseudo-koden side 316 lgbe nul eller flere gange gennem Case 1, og
derefter hgjst een gang gennem Case 2 og hgjst een gang gennem Case 3,
hvorefter den stopper.

Bemeark fglgende observationer:

e Selve indsattelsen (at erstatte et tomt undertree med en ny knude,
uden rebalancering) kan hgjst gge ¥ (T) med een.

e Under rebalancering vil Case 2 ikke sendre ¢ (7T) (folger af Figur 13.6
og den tilhgrende figurtekst).

e Under rebalancering kan Case 3 hgjst gge ¥ (T") med een (folger af
Figur 13.6 og den tilhgrende figurtekst).

Opgaven bestar af nedenstaende delopgaver i) til v).

i) Argumentér for at hvis en rebalancering starter med k gange Case 1,
da vil disse senke 1 (T) med mindst k — 1 (brug Figur 13.5 og den
tilhgrende figurtekst).

Vi ser nu pa situationen hvor man starter med et rgd-sort tree Tgiart 08
laver n indsaettelser, resulterende i et trae Ty, og gnsker at vurderere den
samlede mangde rebalanceringsarbejde. Lad k; betegne det antal gange
Case 1 udfgres ved rebalancering efter den i’te indsaettelse.

ii) Argumentér for at der hgjst n gange i alt udfgres Case 3.

iii) Argumentér for at

n

7vb(Tslut) < ¢(Tstart) + 2n — Z(k‘z — 1)

i=1

ved at bruge ovenstaende observationer og udsagn.

Vi ser nu pa situationen hvor de n indsaettelser starter med et tomt tree. Sa
geelder naturligvis ¢(Tgtart) = 0. For alle traeer T er 0 < ¢(T'), sa vi har
0 < ¢(Tyyt). Heraf folger fra sidste ulighed ovenfor at

n

0<2n—) (k—1).

=1

iv) Argumentér for at det heraf fplger at » ;" | k; < 3n.

v) Argumentér for at den samlede maengde rebalanceringsarbejde under
de n indseettelser er O(n), hvis man starter med et tomt tree.



Formalia

Lav en rapport, som indeholder dine svar pa opgave 1 og 2 ovenfor. Ko-
den for opgave 1 skal veere passende kommenteret, skal inkluderes i rap-
porten som bilag, og eventuelle ikke-trivielle aspekter af implementeringen
skal diskuteres i rapportens hoveddel. Der skal afleveres rapporten i pdf-
format, samt Java-implementationen som separate filer (dvs. udover deres
inklusion pa tryk i rapporten). Husk at skrive navnene pa personerne i
gruppen pa forsiden af rapporten.

Materialet afleveres i Blackboard med veerktgjet “SDU Assignment” (ikke
at forveksle med “Assignment hand in”, som er et andet afleveringsveerktoj
i Blackboard). Det kan findes under “Tools” i menuen i kursussiden i Black-
board. Menuen findes ved at klikke pa det lille “dobbelt-firkant”-ikon i
gverste halvdel af venstre kant af kursussiden i Blackboard (om ngdvendigt
maksimer det fremkomne vindue).

Aflever materialet senest:

Onsdag den 25. april, 2012, kl. 23:59.



Appendiks

Algoritmen ISREDBLACK(T') nedenfor returnerer true hvis og kun hvis T’
opfylder kravene 2, 4, og 5 pa side 308 i Cormen et al. (det antages at krav 1
er opfyldt, dvs. at der kun bruges farverne sort og red, og krav 3 bliver
automatisk opfyldt via brugen af en sentinel-knude med farven sort).

Man skal ikke bevise noget om korrekthed eller kgretid for denne algoritme.

ISREDBLACK(T)
return {7.root.color == black and
BrackHEGHT(T', T.root) > 0 and
(not TWOREDSINROW(T', T.root))}

BrAackHEIGHT(T, v)
if v == T'.nil
return 0
else
hi1 = BLACKHEIGHT(T', v.left)
he = BLACKHEIGHT(T', v.right)
if hl 75 h2 or h1 == -1
return —1
elseif v.color == black
return h; + 1
else
return Ay

TwoREDSINRowW(T', v)

if v == T.nil
return false
elseif {v.color == red and
(v.left.color == red or v.right.color == red)}
return true
else

return TWOREDSINROW (T, v.left) or TWOREDSINROW (T, v.right)



