
DM507 Algoritmer og datastrukturer

For̊ar 2012

Projekt, del II

Institut for matematik og datalogi
Syddansk Universitet

15. marts, 2012

Dette projekt udleveres i tre dele. Hver del har sin deadline, s̊aledes at
afleveringerne, og dermed arbejdet, strækkes over hele semesteret. Deadline
for del II er onsdag den 25. april. Projektet skal som udgangspunkt besvares
i grupper af størrelse to. Individuelle besvarelser er tilladt, men tilskyndes
ikke.

Mål

Målet for del II af projektet er at implementere rød-sorte træer, samt bevise
en øvre grænse for mængden af rebalancering. Med hensyn til updates skal
der kun ses p̊a indsættelser, ikke sletninger.

Rød-sorte træer

Rød-sorte træer er grundigt beskrevet i Cormen et al., kapitel 13. Bemærk
at pseudo-koden i dette kapitel er baseret p̊a en implementation med en
sentinel-knude T .nil til at repræsentere træets NIL-pointere (bladene samt
rodens forælder), som illustreret i Figur 13.1 (b) p̊a side 310. Denne knude
er altid sort. Vi antager ogs̊a denne implementation her.

Opgaver

Opgave 1

Der skal laves en Java-implementation, baseret p̊a bogens pseudo-kode, af
rød-sorte træer, som indeholder metoderne Search (pseudo-kode side 290
eller 291, skal justeres til at bruge T .nil i stedet for NIL), Insert (pseudo-
kode side 315 (og siderne 316 og 313)), samt InorderTraversal (pseudo-

1



kode side 288, skal justeres til at bruge T .nil i stedet for NIL)). Der skal ikke
implementeres Delete eller yderligere metoder.

Det antages at nøgler er af typen int (s̊a man ikke behøver bruge f.eks.
generics i Java), og at elementer blot best̊ar af nøgler (der er ikke yderligere
data tilknyttet en nøgle). Dette vil være tilstrækkeligt for den senere anven-
delse i del III. Implementationen skal være i form af en Java-klasse, som kan
bruges af andre programmer. Klassen skal hedde RBT, og skal implementere
flg. interface:

public interface RBTree {

public boolean search(int k);

public void insert(int k);

public int[] inorderTraversal();

public boolean isRedBlack();

}

Metoden search(k) returnerer blot en boolean som angiver om nøglen k

er i træet. Metoden insert(k) indsætter nøglen k i træet. Metoden
inorderTraversal() returnerer en kopi af træets elementer i et array (i
sorteret orden) fremfor at printe dem p̊a skærmen som i bogens pseudo-
kode. Metoden isRedBlack() checker om et givet RBTree overholder (de
vigtigste af) kravene 1–5 p̊a side 308. Denne metode er bla. anvendelig til
fejlfinding under implementationsprocessen. Metoden skal baseres p̊a algo-
ritmen beskrevet i pseudo-kode i appendikset nedenfor. Man skal ikke bevise
noget om korrekthed eller køretid for denne algoritme.

Opgave 2

En indsættelse best̊ar af en søgning og indsættelse af ny knude (linie 1–16 i
pseudo-kode side 315), samt en efterfølgende rebalancering af træet (pseudo-
koden side 316).

Vi ønsker i denne opgave at bevise, at hvis man starter med et tomt rød-sort
træ og laver n indsættelser, da er den samlede mængde rebalanceringsarbej-
de (dvs. arbejde lavet af pseudo-koden side 316 (og 313)) i alt O(n). Denne
viden vil vise sig brugbar i del III af projektet. Bemærk at ovenst̊aende
øvre grænse er stærkere end den simple vurdering at n indsættelser hver
højst kan lave rebalanceringsarbejde svarende til stien mod roden, hvilket
blot giver en øvre grænse p̊a O(n log n).

For et rød-sort træ T lader vi ψ(T ) være antallet af knuder i træet som er
sorte og har to røde børn. For eksempel er ψ(T ) = 1 for træet i Figur 13.1
i Cormen et al. (side 310). Vi skal se p̊a hvordan ψ(T ) udvikler sig, n̊ar T
ændrer form under indsættelser og efterfølgende rebalanceringer.

2



Som det fremg̊ar af diskussionen i afsnit 13.3 af Cormen et al. vil while-
løkken i pseudo-koden side 316 løbe nul eller flere gange gennem Case 1, og
derefter højst een gang gennem Case 2 og højst een gang gennem Case 3,
hvorefter den stopper.

Bemærk følgende observationer:

• Selve indsættelsen (at erstatte et tomt undertræ med en ny knude,
uden rebalancering) kan højst øge ψ(T ) med een.

• Under rebalancering vil Case 2 ikke ændre ψ(T ) (følger af Figur 13.6
og den tilhørende figurtekst).

• Under rebalancering kan Case 3 højst øge ψ(T ) med een (følger af
Figur 13.6 og den tilhørende figurtekst).

Opgaven best̊ar af nedenst̊aende delopgaver i) til v).

i) Argumentér for at hvis en rebalancering starter med k gange Case 1,
da vil disse sænke ψ(T ) med mindst k − 1 (brug Figur 13.5 og den
tilhørende figurtekst).

Vi ser nu p̊a situationen hvor man starter med et rød-sort træ Tstart og
laver n indsættelser, resulterende i et træ Tslut, og ønsker at vurderere den
samlede mængde rebalanceringsarbejde. Lad ki betegne det antal gange
Case 1 udføres ved rebalancering efter den i’te indsættelse.

ii) Argumentér for at der højst n gange i alt udføres Case 3.

iii) Argumentér for at

ψ(Tslut) ≤ ψ(Tstart) + 2n−
n∑

i=1

(ki − 1)

ved at bruge ovenst̊aende observationer og udsagn.

Vi ser nu p̊a situationen hvor de n indsættelser starter med et tomt træ. S̊a
gælder naturligvis ψ(Tstart) = 0. For alle træer T er 0 ≤ ψ(T ), s̊a vi har
0 ≤ ψ(Tslut). Heraf følger fra sidste ulighed ovenfor at

0 ≤ 2n−
n∑

i=1

(ki − 1).

iv) Argumentér for at det heraf følger at
∑n

i=1 ki ≤ 3n.

v) Argumentér for at den samlede mængde rebalanceringsarbejde under
de n indsættelser er O(n), hvis man starter med et tomt træ.

3



Formalia

Lav en rapport, som indeholder dine svar p̊a opgave 1 og 2 ovenfor. Ko-
den for opgave 1 skal være passende kommenteret, skal inkluderes i rap-
porten som bilag, og eventuelle ikke-trivielle aspekter af implementeringen
skal diskuteres i rapportens hoveddel. Der skal afleveres rapporten i pdf-
format, samt Java-implementationen som separate filer (dvs. udover deres
inklusion p̊a tryk i rapporten). Husk at skrive navnene p̊a personerne i
gruppen p̊a forsiden af rapporten.

Materialet afleveres i Blackboard med værktøjet “SDU Assignment” (ikke
at forveksle med “Assignment hand in”, som er et andet afleveringsværktøj
i Blackboard). Det kan findes under “Tools” i menuen i kursussiden i Black-
board. Menuen findes ved at klikke p̊a det lille “dobbelt-firkant”-ikon i
øverste halvdel af venstre kant af kursussiden i Blackboard (om nødvendigt
maksimer det fremkomne vindue).

Aflever materialet senest:

Onsdag den 25. april, 2012, kl. 23:59.

4



Appendiks

Algoritmen IsRedBlack(T ) nedenfor returnerer true hvis og kun hvis T
opfylder kravene 2, 4, og 5 p̊a side 308 i Cormen et al. (det antages at krav 1
er opfyldt, dvs. at der kun bruges farverne sort og rød, og krav 3 bliver
automatisk opfyldt via brugen af en sentinel-knude med farven sort).

Man skal ikke bevise noget om korrekthed eller køretid for denne algoritme.

IsRedBlack(T )
return {T .root.color == black and

BlackHeight(T , T .root) ≥ 0 and
(not TwoRedsInRow(T , T .root))}

BlackHeight(T , v)
if v == T .nil

return 0
else

h1 = BlackHeight(T , v.left)
h2 = BlackHeight(T , v.right)
if h1 6= h2 or h1 == −1

return −1
elseif v.color == black

return h1 + 1
else

return h1

TwoRedsInRow(T , v)
if v == T .nil

return false
elseif {v.color == red and

(v.left.color == red or v.right.color == red)}
return true

else
return TwoRedsInRow(T , v.left) or TwoRedsInRow(T , v.right)

5


