
DM507 Algoritmer og datastrukturer

For̊ar 2012

Projekt, del III

Institut for matematik og datalogi

Syddansk Universitet

29. april, 2012

Dette projekt udleveres i tre dele. Hver del har sin deadline, s̊aledes at
afleveringerne, og dermed arbejdet, strækkes over hele semesteret. Deadline
for del III er fredag den 25. maj. Projektet skal som udgangspunkt besvares
i grupper af størrelse to. Individuelle besvarelser er tilladt, men tilskyndes
ikke.

Adaptive sorteringsalgoritmer

En sorteringsalgoritme kaldes adaptiv hvis den kører hurtigere, n̊ar input-
følgen er tæt p̊a at være sorteret i forvejen. For at gøre dette begreb præcist,
må man definere et mål for et inputs afstand fra at være sorteret. Antallet
af inversioner (se del I af projektet for definitionen af inversioner) i input er
et klassisk mål, med mange egenskaber som intuitivt virker fornuftige: en
stigende (sorteret) følge har nul inversioner, en aftagende (omvendt sorteret)
følge har det maksimale antal inversioner n(n − 1)/2 = Θ(n2), og hvis
større elementer flyttes foran mindre elementer, stiger antallet af inversioner.
I dette projekt lader vi INV betegne antallet af inversioner i input.

I Cormen et al. opgave 2-4 (side 41) p̊a Ugeseddel 3 har vi vist at køretiden
for InsertionSort er Θ(n+ INV). InsertionSort er alts̊a adaptiv med hensyn
til INV.

Formålet med del III af projektet er at

• Udvikle en sorteringsalgoritme, FingerTreeSort, som er endnu mere
adaptiv mth. INV end InsertionSort.

• Implementere FingerTreeSort.

• Sammenligne InsertionSort, FingerTreeSort samt MergeSort (der ikke
er adaptiv) med hensyn til køretid i praksis p̊a inputs med varierende
INV-værdier.

1



InsertionSort er implementeret p̊a Ugeseddel 2, FingerTreeSort implemen-
teres her i del III af projektet, mens MergeSort er implementeret i del II af
projektet.

FingerTreeSort

I ethvert binært søgetræ kan elementerne udskrives i O(n) tid via et inorder
gennemløb (se øverst side 288 i Cormen et al.). Dvs. at man kan sortere ved
at bygge et søgetræ og derefter udskriver elementerne. Dette tager O(n) tid
plus tiden for at bygge træet.

FingerTreeSort ligner InsertionSort ved at elementerne x1, x2, x3, . . . , xn i
input indsættes efter stigende j, nu blot i et balanceret søgetræ fremfor et
array. Vi vil her anvende rød-sorte træer. En yderligere idé i FingerTreeSort
er at vedligeholde en reference T .max til knuden med det største element i
træet (dvs. den nederste knude p̊a højrestien i træet), og foretage søgningen
efter næste indsættelsespunkt derfra (i stedet for fra roden). Her betegner
indsættelsespunktet det blad, som under indsættelsen bliver erstattet med
en ny knude indeholdende xj.

Mere præcist indsættes hvert nyt element xj (for j ≥ 2) ved en procedure
beskrevet ved nedenst̊aende pseudokode. Referencen T .max til knuden med
det største element kaldes ofte en finger, heraf navnet FingerTreeSort.

FingerInsert(T , xj)
opret ny knude z indeholdende xj
if xj ≥ T .max.key

indsættelsespunkt = højre barn af T .max
T .max = z

else

v = T .max
while xj < v.key AND v 6= T .root

v = v.parent
søg p̊a normal vis fra v efter indsættelsespunktet

erstat bladet ved indsættelsespunktet med z
rebalancer fra z

Ovenst̊aende pseudo-kode er en anelse mere højniveau end bogens. Detal-
jeniveauet kan øges med flg. bemærkninger: Koden udført ved en if-case
kan implementeres ved “y = T .max”, “T .max = z”, efterfulgt af linierne 13
(uden else-keyword) og 14–17 p̊a side 315 i Cormen et al. Koden udført ved
en else-case kan implementeres ved while-løkken ovenfor (inkl. initialisering

2



af v i linien før løkken), efterfulgt af “x = v”, samt linierne 3–8, 11 (med
elseif erstattet af if), og 12–17 p̊a side 315 i Cormen et al.

T .max

indsættelsespunkt

Figuren ovenfor illustrerer et eksempel p̊a FingerInsert. Den røde linie
illustrerer søgning, den bl̊a linie rebalancering.

Selve algoritmen FingerTreeSort fungerer s̊aledes: Først oprettes et rød-sort
træ med een knude indeholdende x1, og T .max initialiseres til at være denne
knude. Derefter indsættes x2, x3, . . . , xn alle med FingerInsert. Til sidst
udskrives alle elementer med et inorder gennemløb af træet.

Opgave 1

Argumenter for at træet overholder inorder efter en indsættelse.

[Hint: argumenter først for at elementerne p̊a højrestien st̊ar i faldende orden
n̊ar man g̊ar opad langs den.]

�

Lad si være længden af den sti, som gennemløbes i søgeprocessen under
indsættelsen af xi, som illustreret med den røde linie i figuren ovenfor. Dvs.
si er lig antal iterationer while-løkken i FingerInsert (søgning opad) plus
længden af den sti som gennemløbes i linien “søg p̊a normal vis fra v efter
indsættelsespunktet” (søgning nedad).

Man kan vise følgende (beviset vil blive givet ved en forelæsning):

n∑

i=2

si = O(n+ n log(INV/n+ 1)).

Opgave 2

Argumenter for, at FingerTreeSort kører i tid

3



O(n+ n log(INV/n+ 1))

[Hint: du skal opgøre det samlede arbejde for alle dele af algoritmen, herun-
der det samlede arbejde for de n indsættelser. Resultatet fra opgave 2 v) i
del II af projektet vil skulle bruges under det sidstnævnte.]

�

Man kan i øvrigt vise, at dette er bedst mulig adaptiveness til INV for sam-
menligningsbaseret (se Cormen et al., afsnit 8.1) sortering: en sammenlign-
ingsbaseret algoritme, der korrekt sorterer alle input af størrelse n som har
et INV-tal p̊a I eller derunder, må have en worst-case køretid (for disse
input) som er Ω(n+ n log(I/n + 1)).

Opgave 3

Angiv den asymptotiske køretid for InsertionSort, FingerTreeSort og Merge-
Sort for input af størrelse n, n̊ar antal inversioner INV i input er henholdsvis
0, n, n1.5 og n2/4.

�

Opgave 4

Implementer FingerTreeSort (som i meget høj grad kan baseres p̊a kode
fra Del II), og find din implementationer af InsertionSort og MergeSort fra
henholdsvis Ugeseddel 2 og del I af projektet frem.

Det er vigtigt at du under udviklingen tester om output er korrekt, dvs.
efter en testkørsel løber output igennem og checker at det er sorteret (ved at
checke at alle nabopar st̊ar i rigtig rækkefølge). Du skal i næste opgave måle
køretid og sammenligne algoritmer, og det er meningsløst at sammenligne
algoritmer, der ikke er korrekte (det er f.eks. trivielt at lave en meget hurtig
algoritme, hvis den ikke behøver løse opgaven).

�

Opgave 5

Du skal i denne opgave sammenligne køretiden for InsertionSort (adaptiv
til INV-målet) implementeret p̊a Ugeseddel 2, FingerTreeSort (teoretisk set
optimalt adaptiv til INV-målet) implementeret her i del III, samt MergeSort
(ikke adaptiv, da den laver essentielt samme mængde arbejde for alle input
af samme størrelse) implementeret i Del I.

4



Du skal først vha. afprøvning finde en inputstørrelse n, hvor MergeSort tager
ca. et sekund (den præcise tid er ikke vigtig). Dette n er fast for resten af
opgaven.

For dette n skal du køre alle dine tre algoritmer p̊a input med varierende
værdi af INV. P̊a kursets hjemmeside findes en Java-metode generateInput,
der som input tager n samt en parameter k, som skal ligge mellem 0 og n.
Metoden leverer s̊a et tilfældigt output med INV liggende i nærheden af nk.

Lav for hver af de tre algoritmer et program, som for hver af værdierne
k = 1, 2, 4, 8, . . . , 2i, . . . , n gør flg.:

• Kalder generateInput for at f̊a genereret et input (et array A af
int’s).

• Kører din O(n log n) metode fra FastInv.java fra Del I af projektet
p̊a en kopi af A (da algoritmen jo sorterer undervejs, skal den arbejde
p̊a en kopi for ikke at ændre indholdet af A), for at tælle den præcise
værdi af INV i A.

• Sorterer Amed den p̊agældende sorteringsalgoritme, og måler køretiden
ved at indsættte to kald til metoden System.currentTimeMillis()

fra Javas bibliotek, eet lige før sorteringen g̊ar i gang, og eet lige
bagefter (sl̊a funktionaliteten af metoden op i Javas online dokumen-
tation, husk ogs̊a at du har brugt den p̊a Ugeseddel 2), hvorudfra
køretiden for selve sorteringen (og kun den, dvs. uden generering af
input, optælling af INV, check af output) beregnes.

• Udskriver INV og køretid.

Det kan være nødvendigt at undlade de største værdier af k for algoritmen
InsertionSort, da disse vil tage for lang tid. Stop f.eks. n̊ar tiden passerer
ca. 30 sekunder.

I rapporten skal du inkludere en graf, som for alle tre algoritmer i samme
koordinatsystem plotter log(INV/n) (hvor INV er den målte værdi) p̊a
førsteaksen og målt køretid p̊a andenaksen. Du skal kommentere p̊a re-
sultatet (Hvad kan man se? Hvilken algoritme vil du foretrække hvorn̊ar?).

�

Det er i øvrigt værd at bemærke at InsertionSort og FingerTreeSort ikke

skal kende INV-tallet for at opn̊a den analyserede køretid. Vi bruger kun
algoritmen fra FastInv.java fordi vi selv gerne vil kende INV-tallet for
input for at kunne lave grafen.

5



Formalia

Lav en rapport, som indeholder dine svar p̊a opgaverne ovenfor. For spørgs-
mål med implementation skal koden være passende kommenteret, skal inklud-
eres i rapporten som bilag, og eventuelle ikke-trivielle aspekter af imple-
menteringen skal diskuteres i rapportens hoveddel. Der skal afleveres rap-
porten i pdf-format, samt Java-implementationen som separate filer (dvs.
udover deres inklusion p̊a tryk i rapporten). Der er ingen krav til navngivn-
ing af koden her i del III. Husk at skrive navnene p̊a personerne i gruppen
p̊a forsiden af rapporten.

Materialet afleveres i Blackboard med værktøjet “SDU Assignment” (ikke
at forveksle med “Assignment hand in”, som er et andet afleveringsværktøj
i Blackboard). Det kan findes under “Tools” i menuen i kursussiden i Black-
board. Menuen findes ved at klikke p̊a det lille “dobbelt-firkant”-ikon i
øverste halvdel af venstre kant af kursussiden i Blackboard (om nødvendigt
maksimer det fremkomne vindue).

Aflever materialet senest:

Fredag den 25. maj, 2012, kl. 23:59.

6


