DMb507 Algoritmer og datastrukturer
Forar 2012

Projekt, del III

Institut for matematik og datalogi
Syddansk Universitet

29. april, 2012

Dette projekt udleveres i tre dele. Hver del har sin deadline, saledes at
afleveringerne, og dermed arbejdet, strackkes over hele semesteret. Deadline
for del III er fredag den 25. maj. Projektet skal som udgangspunkt besvares
i grupper af stgrrelse to. Individuelle besvarelser er tilladt, men tilskyndes
ikke.

Adaptive sorteringsalgoritmer

En sorteringsalgoritme kaldes adaptiv hvis den kgrer hurtigere, nar input-
folgen er taet pa at veere sorteret i forvejen. For at ggre dette begreb preecist,
ma man definere et mal for et inputs afstand fra at veere sorteret. Antallet
af inversioner (se del I af projektet for definitionen af inversioner) i input er
et klassisk mal, med mange egenskaber som intuitivt virker fornuftige: en
stigende (sorteret) fplge har nul inversioner, en aftagende (omvendt sorteret)
fglge har det maksimale antal inversioner n(n — 1)/2 = ©(n?), og hvis
stgrre elementer flyttes foran mindre elementer, stiger antallet af inversioner.
I dette projekt lader vi INV betegne antallet af inversioner i input.

I Cormen et al. opgave 2-4 (side 41) pa Ugeseddel 3 har vi vist at kgretiden
for InsertionSort er ©(n 4+ INV). InsertionSort er altsa adaptiv med hensyn
til INV.

Formalet med del III af projektet er at

e Udvikle en sorteringsalgoritme, FingerTreeSort, som er endnu mere
adaptiv mth. INV end InsertionSort.

e Implementere FingerTreeSort.

e Sammenligne InsertionSort, FingerTreeSort samt MergeSort (der ikke
er adaptiv) med hensyn til kgretid i praksis pa inputs med varierende
INV-veerdier.



InsertionSort er implementeret pa Ugeseddel 2, FingerTreeSort implemen-
teres her i del III af projektet, mens MergeSort er implementeret i del 1T af
projektet.

FingerTreeSort

I ethvert bingert sggetrae kan elementerne udskrives i O(n) tid via et inorder
gennemlgb (se gverst side 288 i Cormen et al.). Dvs. at man kan sortere ved
at bygge et sggetrae og derefter udskriver elementerne. Dette tager O(n) tid
plus tiden for at bygge tracet.

FingerTreeSort ligner InsertionSort ved at elementerne zi,xo,x3,...,2y 1
input indsaettes efter stigende j, nu blot i et balanceret sggetrae fremfor et
array. Vi vil her anvende rgd-sorte traeer. En yderligere idé i FingerTreeSort
er at vedligeholde en reference T.max til knuden med det stgrste element i
treeet (dvs. den nederste knude pa hgjrestien i treeet), og foretage sggningen
efter naeste indsaettelsespunkt derfra (i stedet for fra roden). Her betegner
indsaettelsespunktet det blad, som under indsaettelsen bliver erstattet med
en ny knude indeholdende x;.

Mere preecist indsaettes hvert nyt element z; (for j > 2) ved en procedure
beskrevet ved nedenstaende pseudokode. Referencen T.max til knuden med
det stgrste element kaldes ofte en finger, heraf navnet FingerTreeSort.

FINGERINSERT(T', z;)
opret ny knude z indeholdende x;
if x; > T .max.key
indsaettelsespunkt = hgjre barn af T.max
T max = 2
else
v = T.max
while z; < v.key AND v # T'.root
v = v.parent
sgg pa normal vis fra v efter indseettelsespunktet
erstat bladet ved indsaettelsespunktet med z
rebalancer fra z

Ovenstaende pseudo-kode er en anelse mere hgjniveau end bogens. Detal-
jeniveauet kan gges med flg. bemaerkninger: Koden udfgrt ved en if-case
kan implementeres ved “y = T.max”, “T.max = 2”7, efterfulgt af linierne 13
(uden else-keyword) og 14-17 pa side 315 i Cormen et al. Koden udfort ved
en else-case kan implementeres ved while-lgkken ovenfor (inkl. initialisering



af v 1 linien for lpkken), efterfulgt af “x = v”, samt linierne 3-8, 11 (med
elseif erstattet af if), og 12-17 pa side 315 i Cormen et al.

<— T.max

t

indseettelsespunkt

Figuren ovenfor illustrerer et eksempel pa FINGERINSERT. Den rgde linie
illustrerer sggning, den bla linie rebalancering.

Selve algoritmen FingerTreeSort fungerer saledes: Forst oprettes et rgd-sort
trae med een knude indeholdende x1, og T'.max initialiseres til at veere denne
knude. Derefter indseettes xo, x3,..., 2, alle med FINGERINSERT. Til sidst
udskrives alle elementer med et inorder gennemlgb af tracet.

Opgave 1

Argumenter for at tracet overholder inorder efter en indsaettelse.

[Hint: argumenter forst for at elementerne pa hgjrestien star i faldende orden
nar man gar opad langs den.]

O

Lad s; veere leengden af den sti, som gennemlgbes i sggeprocessen under
indsaettelsen af x;, som illustreret med den rgde linie i figuren ovenfor. Dvs.
s; er lig antal iterationer while-lpkken i FINGERINSERT (s¢gning opad) plus
lengden af den sti som gennemlgbes i linien “sgg pa normal vis fra v efter
indseettelsespunktet” (sggning nedad).

Man kan vise folgende (beviset vil blive givet ved en foreleesning):

Z‘Si = O(n+nlog(INV/n +1)).
=2

Opgave 2

Argumenter for, at FingerTreeSort kgrer i tid



O(n +nlog(INV/n + 1))

[Hint: du skal opggre det samlede arbejde for alle dele af algoritmen, herun-
der det samlede arbejde for de n indsaettelser. Resultatet fra opgave 2 v) i
del II af projektet vil skulle bruges under det sidstneaevnte. |

O

Man kan i gvrigt vise, at dette er bedst mulig adaptiveness til INV for sam-
menligningsbaseret (se Cormen et al., afsnit 8.1) sortering: en sammenlign-
ingsbaseret algoritme, der korrekt sorterer alle input af stgrrelse n som har
et INV-tal pa I eller derunder, ma have en worst-case kgretid (for disse
input) som er Q(n + nlog(I/n+ 1)).

Opgave 3

Angiv den asymptotiske kgretid for InsertionSort, FingerTreeSort og Merge-
Sort for input af stgrrelse n, nar antal inversioner INV i input er henholdsvis
0, n, n'® og n?/4.

O

Opgave 4

Implementer FingerTreeSort (som i meget hgj grad kan baseres pa kode
fra Del II), og find din implementationer af InsertionSort og MergeSort fra
henholdsvis Ugeseddel 2 og del I af projektet frem.

Det er vigtigt at du under udviklingen tester om output er korrekt, dvs.
efter en testkorsel lgber output igennem og checker at det er sorteret (ved at
checke at alle nabopar star i rigtig reekkefolge). Du skal i naeste opgave male
koretid og sammenligne algoritmer, og det er meningslgst at sammenligne
algoritmer, der ikke er korrekte (det er f.eks. trivielt at lave en meget hurtig
algoritme, hvis den ikke behgver lgse opgaven).

O

Opgave 5

Du skal i denne opgave sammenligne kgretiden for InsertionSort (adaptiv
til INV-malet) implementeret pa Ugeseddel 2, FingerTreeSort (teoretisk set
optimalt adaptiv til INV-malet) implementeret her i del I11, samt MergeSort
(ikke adaptiv, da den laver essentielt samme maengde arbejde for alle input
af samme stgrrelse) implementeret i Del 1.



Du skal fgrst vha. afprgvning finde en inputstgrrelse n, hvor MergeSort tager
ca. et sekund (den przecise tid er ikke vigtig). Dette n er fast for resten af
opgaven.

For dette n skal du kegre alle dine tre algoritmer pa input med varierende
veerdi af INV. Pa kursets hjemmeside findes en Java-metode generateInput,
der som input tager n samt en parameter k, som skal ligge mellem 0 og n.
Metoden leverer sa et tilfeeldigt output med INV liggende i naerheden af nk.

Lav for hver af de tre algoritmer et program, som for hver af veerdierne
k=1,2,4,8,...,2", ..., n gor flg.:

e Kalder generatelInput for at fa genereret et input (et array A af
int’s).

e Kogrer din O(nlogn) metode fra FastInv. java fra Del I af projektet
pa en kopi af A (da algoritmen jo sorterer undervejs, skal den arbejde
pa en kopi for ikke at sendre indholdet af A), for at teelle den przecise
veerdi af INV i A.

e Sorterer A med den pagacldende sorteringsalgoritme, og maler kgretiden
ved at indseettte to kald til metoden System.currentTimeMillis()
fra Javas bibliotek, eet lige for sorteringen gar i gang, og eet lige
bagefter (sla funktionaliteten af metoden op i Javas online dokumen-
tation, husk ogsa at du har brugt den pa Ugeseddel 2), hvorudfra
koretiden for selve sorteringen (og kun den, dvs. uden generering af
input, opteelling af INV, check af output) beregnes.

o Udskriver INV og kgretid.

Det kan veere ngdvendigt at undlade de stgrste veerdier af k for algoritmen
InsertionSort, da disse vil tage for lang tid. Stop f.eks. nar tiden passerer
ca. 30 sekunder.

I rapporten skal du inkludere en graf, som for alle tre algoritmer i samme
koordinatsystem plotter log(INV/n) (hvor INV er den malte veerdi) pa
forsteaksen og malt keretid pa andenaksen. Du skal kommentere pa re-
sultatet (Hvad kan man se? Hvilken algoritme vil du foretreekke hvornar?).

O

Det er i gvrigt veerd at bemaerke at InsertionSort og FingerTreeSort ikke
skal kende INV-tallet for at opna den analyserede kgretid. Vi bruger kun
algoritmen fra FastInv.java fordi vi selv gerne vil kende INV-tallet for
input for at kunne lave grafen.



Formalia

Lav en rapport, som indeholder dine svar pa opgaverne ovenfor. For spgrgs-
mal med implementation skal koden veere passende kommenteret, skal inklud-
eres i rapporten som bilag, og eventuelle ikke-trivielle aspekter af imple-
menteringen skal diskuteres i rapportens hoveddel. Der skal afleveres rap-
porten i pdf-format, samt Java-implementationen som separate filer (dvs.
udover deres inklusion pa tryk i rapporten). Der er ingen krav til navngivn-
ing af koden her i del III. Husk at skrive navnene pa personerne i gruppen
pa forsiden af rapporten.

Materialet afleveres i Blackboard med verktgjet “SDU Assignment” (ikke
at forveksle med “Assignment hand in”, som er et andet afleveringsveerktgj
i Blackboard). Det kan findes under “Tools” i menuen i kursussiden i Black-
board. Menuen findes ved at klikke pa det lille “dobbelt-firkant”-ikon i
gverste halvdel af venstre kant af kursussiden i Blackboard (om ngdvendigt
maksimer det fremkomne vindue).

Aflever materialet senest:

Fredag den 25. maj, 2012, kl. 23:59.



