Introduction to Haskell

Rolf Fagerberg

Fall 2006

Haskell

Functional language (no assignments)

e Purely functional

e Statically typed

e Rich typesystem

e Lazy (infinite data structures OK)

Named after Haskell Brooks Curry (1900-1982, USA,
mathematical logic).

Language in development. Haskell-1998: frozen version (used
here). Concrete implementation: Hugs interpreter + libraries.

Functions
Math:

a="17 «— definitions
f(x)=2x+5
g(y,z) =yz* + 2 +2

bs(x) x ,ifxz >0
apDS\ T) =
—x , otherwise

abs(f(g(a,2))) «—evaluation
Haskell:
a=17 «— definitions
f x=2%x +bgyz=y%x2z"2 + 2z + 2
abs x
| x >= 0 = X
| otherwise = -X

abs(f(g a 2)) «—evaluation

Types
Math:

3.0c R

g: RXR—R
gy, 2) =yz* + 2+ 2

Haskell:

3.0 Is of type Float

g :: Float -> Float -> Float
gy z=y*z"2 +z + 2

Haskell

Literals:
277, -3.141527, 7.89e-6, ’A’,‘ Hello World”’
Built-In Types

Int, Bool, Float, Double, Char, String,
Integer, Rational, Complex,...

Type Constructors (even more to come)

Lists (~ arrays): [] Tuples (~ records): ()
a :: [Int] b :: (Char,Bool,Int)
a = [1,2,3] b = (°PA’, True,1)

Haskell Basic Elements

Names (identifiers, “variables”) associated with Values
(integers, booleans, strings, and also functions)

Each value belongs to a Type (a domain/set of values)
Definitions associate names with values.
Literals and other Constructors creates basic values.

Functions (including operators: +, *,...) take values to new
values

Evaluation of Expressions build using basic values and
functions.

Hugs

Interpreter (+ libraries) for Haskell-1998.

Reads definitions in script file(s).

Evaluates expressions written in its shell using definitions in
script and in built-in definitions in standard library Prelude.hs

Note: definitions cannot be given at command line, only Iin
scripts.

Some Haskell Syntax

Off-side rule (indentation gives block structure)

Comments:
Single line: -- ...comment...
Block Comment: {- ...comment... -}

|dentifiers: Letter [Letter, Digit, _, * J*

Value names, parameters, (type parameters):
Small initial letter

Type names, (constructors, modules, type classes):
Capital initial letter

Some words reserved (case, class, data, default,
deriving, do, else, 1f, import, in, infix, infixl,
infixr, instance, let, module, newtype, of, then,
type, where)

Recursion

No assignments = no loops
(Loops over lists exist - see list comprehensions below)
Hence, in functional programming, recursion is used a lot.

power2 :: Int -> Int

power2 n
| n==0 =1
| n>0 = 2 *x power2 (n-1)

Operators

Operators = built-in set of functions with short non-letter names.

Examples: + (addition), - (subtraction), == (equality test), <=
(inequality test), && (boolean AND), | | (boolean OR) ++ (list
concatenation), : (element preprending to lists (“push™)), t! (list
Indexing), . (function composition).

Most have two parameters and are written using infix notation:

2 + 3 — Infix
add 2 3 «— usual prefix notation for functions

We can convert between “operator” and “standard” version of
two parameter functions

add 2 3 ~ b
(+) 2 3 ~ 5
2 ‘add® 3 ~ 5

Def:
add x y = x +y

10

Associativity and Binding Power

To save on parentheses, operators (along with function
application) are given diffent binding powers:

((2 x 3) + ((f 4) ~ 2))

2 *x3+f 4" 2

Haskell has nine levels of binding powers (9 is strongest).
To resolve evaluation order of sequences of operators of equal
binding power, they have an associativity assigned:

(((4 +3) +2) +1)
(((4 -3) -2) - 1)
4" (3" (2" D))

N e
.

So + and - are left associative, whereas ~ Is right associative.

11

Do-I1t-yourself operators

You can define new operators. Example: Minimum operator:

(??) :: Int -> Int -> Int
X 77y
|X>y =
| otherwise = x

<

Now:
3 774 ~ 3
Define associativiy and binding power: infixl 7 77

The names of operators must be created using the following
characters:

| #$&*+. /<=>70\" |-~

12

Pattern Matching

Definitions may use pattern matching on the parameters (often
more elegant than guards):

fac 0 = 1 or True _ = True
fac n = fac (n-1) * n or _ True = True

or _ _ = False
fliptuple (x,y) = (y,x)

sum :: [Int] -> Int
onAxe (0,y) = True sum [] =0
onAxe (x,0) = True sum (x:xs) = X + sum XS

onAxe (x,y) = False

sum [1,2,3] ~ 6
onAxe (0,_) = True sum [] ~ O

onAxe (_,0) = True
onAxe (_,_) = False

Pattern Matching

A pattern is made of:

e Literals 24, True, ’s’, []

e Identifiers x, y (wild card _ Is a nhameless variable)
e Tuple constructor (x,y,z)

e List constructor (x:xs)

e More constructors later. ..

A pattern can be hierarchical: ("hi", (x:(x’:xs),(2,0)))

A pattern can match or fail. To match, all sub-patterns must
recursively match. When a match occurs, any matched
Identifiers are bound to the value matched.

14

Polymorphism

Types can be parametric

concat :: [[Int]] -> [Int]

concat [] = []
concat (x:xs) = x ++

concat Xxs

concat [[1,2],[4,5,6]] ~ [1,2,4,5,6]

concat :: [[al]l -> [al

concat [] = [
concat (x:xs) = x ++
z1lp ::
zip (x:xs) (y:ys)
zip (x:xs) []
zip [] A

zip [1,2,3] [’a’,’Db’]

concat xs

[a]l -> [b] -> [(a,b)]

(x,y) : zip xs ys
]
]

~ [(1,%a?),(2,°b?)]

15

Functions as parameters and results

In Haskell, functions are values.

Can be passed to and from functions (then called high-order
functions).

Very useful high-order functions (most discussed later):
map, filter, zipWith, foldl, foldr, foldll, foldrl

map :: (a -> b) -> [a] -> [b]
map £ [1 = []
map f (x:xs) = f x : map f xs

16

Functions as parameters and results

Generating functions as results:

e Composition:

f=g . h
twice £f = f . £

e Partial application (currying):

add :: Int -> Int -> Int
add x y =x +y

addOne :: Int -> Int
addOne = add 1 oOfr
addOne = (1+)

addOneAll :: [Int] -> [Int]
addOneAll = map (add 1)

17

	Haskell
	Functions
	Types
	Haskell
	Haskell Basic Elements
	Hugs
	Some Haskell Syntax
	Recursion
	Operators
	Associativity and Binding Power
	Do-it-yourself operators
	Pattern Matching
	Pattern Matching
	Polymorphism
	Functions as parameters and results
	Functions as parameters and results

