
Introduction to Haskell

Rolf Fagerberg

Fall 2006

1

Haskell

Functional language (no assignments)

• Purely functional

• Statically typed

• Rich typesystem

• Lazy (infinite data structures OK)

Named after Haskell Brooks Curry (1900–1982, USA,
mathematical logic).

Language in development. Haskell-1998: frozen version (used
here). Concrete implementation: Hugs interpreter + libraries.

2

Functions
Math:

a = 7 ← definitions
...f(x) = 2x + 5

g(y, z) = yz2 + z + 2

abs(x) =







x , if x ≥ 0

−x , otherwise

abs(f(g(a, 2))) ←evaluation

Haskell:

� � �

← definitions
...

� � � ��� � � 	�
 �
 � ��
 � � �
 � �

� ��� �
� � � � � � �

� � � ��� �� � � � � � �

� ��� � � �
 � � � �
←evaluation

3

Types
Math:

3.0 ∈ R

g : R×R→ R

g(y, z) = yz2 + z + 2

Haskell:

�
�

�

is of type

�� � � �

g :: Float -> Float -> Float

g y z = y*z^2 + z + 2

4

Haskell
Literals:

� � ��� � �
�

� � � 	 � ��� �
�

�� � � � � � � � � 	
 � � � � � � � � �

Built-In Types

��� � � � � � � � �� � � � � � �� � � � � � � � �� � � � ��
 �

��� � �
 � �� � � � � �� �� � � �� � � � �� � � �
Type Constructors (even more to come)

Lists (∼ arrays):

��

� � � � ��� � �

� � � � � � � � �

Tuples (∼ records):

� �

� � � � � � � �� � � � � � � � � �

� � � � � � � � �� � � � �

5

Haskell Basic Elements

Names (identifiers, “variables”) associated with Values
(integers, booleans, strings, and also functions)

Each value belongs to a Type (a domain/set of values)

Definitions associate names with values.

Literals and other Constructors creates basic values.

Functions (including operators: �, � ,. . .) take values to new
values

Evaluation of Expressions build using basic values and
functions.

6

Hugs

Interpreter (+ libraries) for Haskell-1998.

Reads definitions in script file(s).

Evaluates expressions written in its shell using definitions in
script and in built-in definitions in standard library

� � � � � �� �
��

Note: definitions cannot be given at command line, only in
scripts.

7

Some Haskell Syntax

• Off-side rule (indentation gives block structure)

• Comments:
Single line: � � � � � � �� � � � �. . .
Block Comment:

� � � � � � �� � � � � � � � � �

• Identifiers: Letter [Letter, Digit, � ,
�

]∗

Value names, parameters, (type parameters):
Small initial letter

Type names, (constructors, modules, type classes):
Capital initial letter

• Some words reserved (� �� � � � � �� � � � � � �� �� � �� � � �

�� � � � ��
 �� � �� � � �� �� � � �� �

�� � � � �� �� � � �� � � � � � � � � � �� � � � � � � � � � � � � � � � �� � �

� � � � � � �� � �)
8

Recursion

No assignments⇒ no loops

(Loops over lists exist - see list comprehensions below)

Hence, in functional programming, recursion is used a lot.

power2 :: Int -> Int

power2 n

| n==0 = 1

| n>0 = 2 * power2 (n-1)

9

Operators
Operators = built-in set of functions with short non-letter names.

Examples: � (addition), � (subtraction), � � (equality test), � �

(inequality test),

� �

(boolean AND),

� �

(boolean OR) � � (list
concatenation), � (element preprending to lists (“push”)),

� �

(list
indexing), � (function composition).

Most have two parameters and are written using infix notation:

� � �

← infix

� � � � �

← usual prefix notation for functions

We can convert between “operator” and “standard” version of
two parameter functions

Def:

� � � � � � � � �

� � � � �

;

	

� � � � �

;

	

� � � � � � �

;

	

10

Associativity and Binding Power

To save on parentheses, operators (along with function
application) are given diffent binding powers:

� � � � � � � �

=

� � � � � � � � � � � � � � � �

Haskell has nine levels of binding powers (9 is strongest).
To resolve evaluation order of sequences of operators of equal
binding power, they have an associativity assigned:

� � � � � � �

=

� � � � � � � � � � � � �

� � � � � � �

=

� � � � � � � � � � � � �

� � � � � � �

=
� � � � � � � � � � � � �

So � and � are left associative, whereas

�

is right associative.

11

Do-it-yourself operators

You can define new operators. Example: Minimum operator:

(??) :: Int -> Int -> Int

x ?? y

| x > y = y

| otherwise = x

Now:

� � � �

;

�

Define associativiy and binding power:

�� � � �� � � �

The names of operators must be created using the following
characters:

!#$%&*+./<=>?@\^|-~

12

Pattern Matching

Definitions may use pattern matching on the parameters (often
more elegant than guards):

� � � � � �

� � � � � � � �

� � � � � � �

� � � � � � � � � � �� � � � � �� � �

�� � � � � � � � � � � �� �

�� � � � � �� � � � � �� �

�� � � � � �� � � � � �� � �

�� � � � � � � �
� � � �� �

�� � � � �
� �

� � � � �� �

�� � � � �
� � �

� � � �� � �

� � � �� �

�

� � �� �

� �
�

� �� � � � �� �

� �
� �

� � �� � �

� � � � � � ��� � � � � ��� �

� � � �� � �

� � � � � � �� � � � � � � � ��

� � � � � � � � � �

;

�

� � � ��

;

�

13

Pattern Matching

A pattern is made of:

• Literals

� �

,

� �� � ,

� � �

,

��

• Identifiers �, � (wild card � is a nameless variable)

• Tuple constructor

� �� ��
 �

• List constructor

� � � �� �

• More constructors later. . .

A pattern can be hierarchical:
�� � �� �
� � � � � � � �� �
�

� � � � � � �

A pattern can match or fail. To match, all sub-patterns must
recursively match. When a match occurs, any matched
identifiers are bound to the value matched.

14

Polymorphism
Types can be parametric

� �� � � � � � � � ��� � � � � � � ��� � �

� �� � � � �� � ��

� �� � � � � � � �� � � � � � � �� � � � ��

� �� � � � � � � � � � �
� �� 	 � � � �

;

� � � � � �� 	 � � �

� �� � � � � � � � �� � � � � ��

� �� � � � �� � ��

� �� � � � � � � �� � � � � � � �� � � � ��

 � � � � � �� � � � �� � � � � �� � � �

 � � � � � �� � � � � �� � � � �� � � �
 � � �� ��

 � � � � � �� � �� � ��

 � � ��
 � � ��

 � � � � � � � � � � � � � � � � � �

;

� � � � � � � �
�

� � � � � � � �

15

Functions as parameters and results

In Haskell, functions are values.

Can be passed to and from functions (then called high-order
functions).

Very useful high-order functions (most discussed later):

� � �,

� � � � � �,
 � � � � � �

,

� � � ��

,

� � � � �,
� � � �� �

,

� � � � � �

� � � � � � � � � � � � � � �� � � � ��

� � � � �� � ��

� � � � � � � �� � � � � � � � � � ��

16

Functions as parameters and results

Generating functions as results:

• Composition:

� �
 �

�

� � � � � � � �
�

�

• Partial application (currying):

� � � � � � � � � � ��� � � � ��� �

� � � � � � � � �

� � � �� � � � ��� � � � ��� �

� � � �� � � � � � �

or

� � � �� � � � � � �

� � � �� � �� � � � � ��� � � � � � � � � �

� � � �� � �� � � � � � � � � � � �

17

	Haskell
	Functions
	Types
	Haskell
	Haskell Basic Elements
	Hugs
	Some Haskell Syntax
	Recursion
	Operators
	Associativity and Binding Power
	Do-it-yourself operators
	Pattern Matching
	Pattern Matching
	Polymorphism
	Functions as parameters and results
	Functions as parameters and results

