Introduction to Haskell Il

Rolf Fagerberg

Fall 2006

Algebraic Types

Besides simple type synonymes (using the keyword type), more
advanced user defined types - denoted algebraic types - can be
created with the data keyword.

The general syntax is:

data Typename zero_or_more_type-variables
= Constructorl zero_or_more_type_expr |
= Constructor2 zero_or_more_types_expr |

= ConstructorN zero_or_more_types
deriving (list_of_certain_classes)

The identifiers for the type name and the constructor names
must be capitalized.

Examples

Enumerated types:

data Bool = False | True
data Ordering = LT | EQ | GT
data Seasons = Winter | Spring | Summer | Fall
data WeekDays
= Mon | Tue | Wed | Thu | Fri | Sat | Sun

workDays = [Mon, Tue, Wed, Thu, Fril
Product types (alias tuples, alias records):

data DBRecord = DBRec Name Address Age
type Name = String

type Address = String

type Age = Int

personl = DBRec "Joe Dole" '"Main Street 10" 42

Examples

Alternatives:

data Shape
= Circle Float | Rectangle Float Float

Note: constructors are functions:

Circle :: Float -> Shape
shapel = Circle 3.0
Rectangle :: Float -> Float -> Shape

shape?2 = Rectangle 45.9 87.6

Additionally, they can (like the built-in constructors [1, :, etc.) be
used as patterns in pattern matching:

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle w h) = wxh

Examples
Algebraic types can be recursive:
data IntList = EmptyList | Cons Int IntList

data IntExpr = Literal Int |
Add IntExpr IntExpr |
Sub IntExpr IntExpr

data IntTree = IntLeaf |
IntNode Int IntTree IntTree

tree = IntNode 7 IntLeaf (IntNode 13 IntlLeaf IntlLeaf)

Constructors can be infix operators (identifier must then start
with “:7):

data IntlList = EmptyList | Int ::: IntList

Examples

Algebraic types can be parametric:

data List a = EmptyList | Cons a (List a)

data Tree a Leaf |

Node a (Tree a) (Tree a)
Example functions on trees:

depth :: Tree a -> Int
depth Leaf =0
depth (Node _ 1 r) = 1 + max (depth 1) (depth r)

inorder :: Tree a -> [a]
inorder Leaf = []
inorder (Node x 1 r) = inorder 1 ++ [x] ++ inorder r

Haskell Classes

Class = a specified set of functions (to be overloaded among
several types).

Classes created by giving their signature = the types of the set
of functions (so class = interface in Java).

class Eq a where
(==) :: a -> a -> Bool

Existing types can be made instances of a class by providing
definitions of the functions:

instance Eq MyBool where
(==) MyTrue MyTrue = True
(==) MyFalse MyFalse = True
(==) _ = False

Context

Classes can be used as context, I.e. constraints on type
variables in parametric types:

elem :: Eq a => a -> [a] -> Bool
elem x [] = False
elem x (y:ys) = (x ==y) || (elem x ys)

Can also be used in instance declarations:

instance Eq a => Eq [a] where

(==) [] [] = True
(==) (x:xs8) (y:yx) = (x == y) & (xs == ys)
(==) _ _ = False

Note: not all types are in the (built-in) class Eq. E.g. function
types are not (it seems difficult to give an operational feasible
definition of function equality).

Overloading vs. Polymorphism

Polymorphism
One definition of function works for many types.
Overloading

Several definitions of the same function (i.e. same
identifier), one for each type.

OO languages like Java normally have overloading but not
polymorphism.

In Haskell, overloading eases coding (imagine naming a version
of == for each type) and makes the notion of polymorphism
stronger (more functions can be defined with the same code).

Default Definitions

Class declarations can contain default definitions:

class Eq a where

(==), (/=) :: a ->a -> Bool
X /=y = not (x==y)
X ==y = not (x/=y)

Now, instance declarations only need to define /= or ==.
Defining (overriding) both is OK.

10

Derived Classes

Classes can be derived from other classes (again using the
context notation):

class (Eq a) => Ord a where

(<), (=), (>), (=) a -> a -> Bool
max, min 1 a ->a -> a
compare a -> a -> (Ordering

When declaring a type an instance of 0rd, the methods of Eq are
Inherited.

Thus, type classes form a hierarchy rather like the class
hierarchy in OO languages.

11

Some Built-In Classes and Types

The standard prelude contains many predefined type classes.

E.g. for equality (Eq), ordering (0Ord), enumeration(Enum),
serialization (Show, Read), and a collection of classes for
structuring the standard numeric types.

Literals may be overloaded, which can lead to ambiguities for

Haskell. Of what type is e.g. 2+37? It may be necessary to
resolve explicitly:

(2+3) : : Int

12

All Bullt-In Classes

Read
&1l except
10, {-=}

Show
L1l exept

BEounded

Int, Chat, Bool ()
Drdering, tuples

Hum

Int, Integer,
Float, Diouble

Al except (=)
10, IDErmor

Enuom
(), Bool, Char, Ordering,
Int, Integer, Float,
Double

Real
Int, Tnteger,
loat, Diouble

Fractional
Float, Diouhkle

RealFrac
Float, Diouhle

RealFloat
Float, Douhle

Integral
Int, Integer

Floating
Float, Douhle

Monad
ID, 1, Ivlavhe

See www.haskell.org/onlinereport/

13

www.haskell.org/onlinereport/

Deriving Membership of Classes

Membership of certain standard type classes can be generated
automatically in Haskell:

data WeekDays
= Mon | Tue | Wed | Thu | Fri | Sat | Sun
deriving (Eq, Ord, Enum, Show, Read)

The operations of the classes are automatically defined using
obvious (recursive) definitions (with ordering of constructors
going from left to right, and using analogy with lexicographic
ordering for non-nullary constructors). The derivation of Enum
can only be done for enumeration types (nullary constructors
only). More on Enunm in later slides.

[Mon,Wed .. Sat] ~» [Mon,Wed,Fril

14

Type Synonyms and Copies

Type Synonyms

type String = [Char]
type Coordinate2D = (Float,Float)

Not a new type, just another (more informative) name.

Type Copying
newtype MyString = MString String

A new type (copy of the old). Class memberships may be
Independent from old type.

15

More Haskell Syntax

List comprehensions
Math: {reS|x>1, xeven}
Haskell: [x | x <- S, x > 1, isEven x]

General form: [exp | generators, guards]

Examples:
[x+y | (x,y) <- [(1,2),(7,8)], y >5] ~ [15]

[(i,7) | i<-[1,2,3,4], j<-[8,9], isEven i]
~ [(2,8),(2,9),04,8),(04,9)]

[j~2 | i<-[[1,2],[10,20]], j<-i 1 ~» [1,4,100,400]

[[j°21j<-i] | i<-[[1,2],[10,20]] 1 ~ [[1,4]1,[100,400]]

16

More Haskell Syntax

Lambda definitions
Nameless functions defined inline:
zipWith (\x y -> x"2 + y"2) [1,2,3] [2,3,4]
~» [5,13,25]

compose2 f g = \xy -> g (f x) (f y)

Enumeration expression
Easy generation of lists of certain types (types in the Enum class).
3 .. 10] ~ [3,4,5,6,7,8,9,10]
[3, 3.3 .. 4] ~ [3.0,3.3,3.6,3.9]

[7a3, Ye) L.)i)] ~S "acegi"
[False ..] ~~» [False,True]

17

More Haskell Syntax

Local definitions

where:| (often used)

A

f x
|
|

HKoN<

0
>= 0
where
SgX
Sqy
g z

-(sqx*sqy + sqx + sqy) + gy
sqx*sqy + sqx + sqy

X*X

y*y
(max x z) + t

where t = x*y*z

let:| (rarely used)

f x = let y=x"3; z=log x in y*z + z"2

18

More Haskell Syntax

Choice

case:| (rarely used)

1s0dd x
= case (x ‘mod‘ 2) of
0 -> False
1 -> True

or (not using “layout”):

is0dd x = case (x ‘mod‘ 2) of {0 -> False; 1 -> True}

if then else:| (somewhat used, especially in textbook)

isO0dd x = if (x ‘mod‘ 2)==0 then "Even" else "0dd"

19

Lists

A very useful type. Many powerful and generic functions in
standard Prelude for working with lists, including (see
Section 8.1 in the Haskell Report):

map, ++, filter, concat, concatMap, head, last,
tail, init, null, length, !!, foldl, foldll,
scanl, scanll, foldr, foldrl, scanr, scanrl,
iterate, repeat, replicate, cycle, take, drop,
splitAt, takeWhile, dropWhile, span, break,
lines, words, unlines, unwords, reverse, and,
or, any, all, elem, notElem, lookup, sum,
product, maximum, minimum, Zzip, zip3, zipWith,
zipWith3, unzip, unzipd3

Textbook covers the most important of these in Chapter 4 (not
necessarily with the same implementations). Even more
functions can be found in the standard library List.

	Algebraic Types
	Examples
	Examples
	Examples
	Examples
	Haskell Classes
	Context
	Overloading vs. Polymorphism
	Default Definitions
	Derived Classes
	Some Built-In Classes and Types
	All Built-In Classes
	Deriving Membership of Classes
	Type Synonyms and Copies
	More Haskell Syntax
	More Haskell Syntax
	More Haskell Syntax
	More Haskell Syntax
	Lists

