
Introduction to Haskell II

Rolf Fagerberg

Fall 2006

1

Algebraic Types

Besides simple type synonymes (using the keyword � � � �), more
advanced user defined types - denoted algebraic types - can be
created with the

��� � � keyword.

The general syntax is:

��� � � � � � �� � 	 �
 �� ��
 ��
 	 �� �

� � � ��� � � � � � �� ��

� � �� � � � � � � �� �
 �� ��
 ��
 	 �� �

� � � �
 �� �� �

� � �� � � � � � � �� �
 �� ��
 ��
 	 �� �

� � � ��
 � � �� �

��� �
� � �� � � � � � � �� !
 �� ��
 ��
 	 �� �

� � � ��

� �� � � � � " # � � � �

 � $
 � �� � � � �
 � � � � � � � %

The identifiers for the type name and the constructor names
must be capitalized.

2

Examples
Enumerated types:

��� � � � � � � � � � � � � � �� � �

��� � � �� � �� � � " � � � � � � � � �

��� � � � � � � �� � � � � � � �� � � �� � � " � � � 	 	 �� � � � � �

��� � � � � � 	
 � ��

� � �� � � � � � � � � � �� � � �� � � � � � � � ��

 �� 	
 � �� � � � �� � � � � � � � � � �� � � �� � �

Product types (alias tuples, alias records):

��� � �
 �� � � �� � �
 �� � � ! � 	 � � � �� �� � � " �

� � � � ! � 	 � � � � � � � "

� � � � � � �� � � � � � � � � � "

� � � � � " � � � � �

� � � � �� � �
 �� � � �� � �
 � � � � � � � � � � � � � � � �� � � �

3

Examples
Alternatives:

��� � � � � � � �

� � � � � � � �� � � � � � � � � � � "� � �� � � � �� � � �

Note: constructors are functions:

� � � � � � � � �� � � � � � � � � � �

� � � � � � � � � � � � � � � �

� � � � � � "� � � � �� � � � � � �� � � � � � � � � � �

� � � � � � � � � � � � � "� � �� � � � � � �

Additionally, they can (like the built-in constructors

� �

, � , etc.) be
used as patterns in pattern matching:

� � � � � � � � � � � � � �� � � �

� � � � # � � � � � � � % � � �� � � �

� � � � # � � � � � � "� �
 � % �
� �

4

Examples
Algebraic types can be recursive:

��� � � � � � � � � � � � 	 � � � � � � � � � �� � � � � � � � � � � �

��� � � � � � �� �� � � � � �� � � � � � �

� � � � � � �� �� � � � �� �� �

� � � � � � �� �� � � � �� ��

��� � � � � � �� � � � � � � � � � $ �

� � � ! � � � � � � � � � �� � � � � � �� � �

� � � � � � � � ! � � � � � � � � � � $ # � � � ! � � � � � � � � � � � $ � � � � � � $ %

Constructors can be infix operators (identifier must then start
with ´ � ´):

��� � � � � � � � � � � � 	 �

5

Examples

Algebraic types can be parametric:

��� � � � � � � � � � 	 � � � � � � � � � �� � � # � � � � � %

��� � � �� � � � � � � � $ �

! � � � � # �� � � � % # �� � � � %

Example functions on trees:

� � � � � � � �� � � � � � � � �

� � � � � � � � $ � �

� � � � � # ! � � �

� � % � � � 	� � # � � � � � � % # � � � � � � %

� � �� � �� � � �� � � � � � � � �

� � �� � �� � � � $ � � �

� � �� � �� # ! � � � � � � % � � � �� � �� � � � �� � � � � � �� � � � �

6

Haskell Classes

Class = a specified set of functions (to be overloaded among
several types).

Classes created by giving their signature = the types of the set
of functions (so class ≈ interface in Java).

� � � � � ��� �
� �� �

� � % � � � � � � � � � � � �
Existing types can be made instances of a class by providing
definitions of the functions:

� � � � � � � � ��� � � � � � �
� �� �

� � % � � �� � � � � �� � � � �� � �

� � % � � � � � � � � � � � � � � � �� � �

� � %

 � � � � � �

7

Context
Classes can be used as context, i.e. constraints on type
variables in parametric types:

� � � 	 � � ��� � � � � � � � � � � � � � � �

� � � 	 � � � � � � � � �

� � � 	 � # � � �� % � # � � � � % � � # � � � 	 � �� %

Can also be used in instance declarations:

� � � � � � � � ��� � � � ��� � � �
� �� �

� � % � � � � � �� � �

� � % # � � � � % # � � �� % � # � � � � % � � # � � � � �� %

� � %

 � � � � � �

Note: not all types are in the (built-in) class

��� . E.g. function
types are not (it seems difficult to give an operational feasible
definition of function equality).

8

Overloading vs. Polymorphism

Polymorphism

One definition of function works for many types.

Overloading

Several definitions of the same function (i.e. same
identifier), one for each type.

OO languages like Java normally have overloading but not
polymorphism.

In Haskell, overloading eases coding (imagine naming a version
of � � for each type) and makes the notion of polymorphism
stronger (more functions can be defined with the same code).

9

Default Definitions

Class declarations can contain default definitions:

� � � � � ��� �
� �� �

� � % �
#� � % � � � � � � � � � � � �

� � � � � � � � # � � � � %

� � � � � � � � # � � � � %

Now, instance declarations only need to define

� � or � �.
Defining (overriding) both is OK.

10

Derived Classes

Classes can be derived from other classes (again using the
context notation):

� � � � � # ��� � % � � �� � �
� � � �

� % �
� � % �
� % �
� � % � � � � � � � � � � � �

	� � � 	 � � � � � � � � � � �

� � 	 � � � � � � � � � � � � �� � � � � � "

When declaring a type an instance of

�� �

, the methods of

��� are
inherited.

Thus, type classes form a hierarchy rather like the class
hierarchy in OO languages.

11

Some Built-In Classes and Types

The standard prelude contains many predefined type classes.

E.g. for equality (

���), ordering (

�� �

), enumeration(
�� �),

serialization (

� � �
,

� � � �

), and a collection of classes for
structuring the standard numeric types.

Literals may be overloaded, which can lead to ambiguities for
Haskell. Of what type is e.g.

� � �

? It may be necessary to
resolve explicitly:

� � � % � � � � �
12

All Built-In Classes

See

 � � � � 	 � � � � �� "� �� � � � �� � � �� ��

13

www.haskell.org/onlinereport/

Deriving Membership of Classes

Membership of certain standard type classes can be generated
automatically in Haskell:

��� � � � � � 	
 � ��

� � �� � � � � � � � � � �� � � �� � � � � � � � ��

� �� � � � � " # � � � �� � � �� � 	 � � � �
 � � � � � %

The operations of the classes are automatically defined using
obvious (recursive) definitions (with ordering of constructors
going from left to right, and using analogy with lexicographic
ordering for non-nullary constructors). The derivation of

�� � 	

can only be done for enumeration types (nullary constructors
only). More on

�� � 	 in later slides.

� � �� � � � � � � � � � �

;

� � �� � � � � � �� � �

14

Type Synonyms and Copies

Type Synonyms

� � � � � � � � � " � � � � � � �

� � � � � � �� � � � � � � �
 � # �� � � � � �� � � � %
Not a new type, just another (more informative) name.

Type Copying

� �
 � � � � � � � � � � � " � � � � � � � " � � � � � "

A new type (copy of the old). Class memberships may be
independent from old type.

15

More Haskell Syntax

List comprehensions

Math: {x ∈ S |x ≥ 1, x even}

Haskell:

� � � � �� � � � � � � � � � � � �� � �

General form:

� �� � � " �� �� � � �� � � " � � � �� �

Examples:

� � � � � # � � � % �� � # � � � % �
� � � % �

� � � � �

;

� � � �

� # � � � % � � �� � � � � � � � � �
� � �� � � � � �
� � � � � �� � �

;

� # � � � % �
� � � % �
� � � % �
� � � % �

� � � � � � �� � � � � � �
�

� � � � �� � �
� � �� � �

;

� � � � � �� � � �� � �

� � � � � � � �� � � � � �� � � � � � �
�

� �� � �� � � �

;

� � � � � �
�

� �� � � �� � � �

16

More Haskell Syntax
Lambda definitions

Nameless functions defined inline:

 � � � � � � # � � � � � � � � � � � � % � � � � � � � � � � � � � �

;

� � � � � � � � �

� � 	 � �� � � $ " � � � � � � " # $ � % # $ � %

Enumeration expression

Easy generation of lists of certain types (types in the

�� � 	 class).

� � � � �� �

;

� � � � � � � � � � � � � � � �� �

� � � � � � � � � �
;

� � � � � � � � � � � � � � � � �

�� � � � � � � � � � � � �

;

� � � � " � �

� � � � � � � �
�

;

� � � � � � � �� � � �

17

More Haskell Syntax

Local definitions

� �� �: (often used)

$ � �
� � � � � � # � � � � � � � � � � � � � � � % � " �

� �

� �� �

� � � � � � �

� � � � �� �

"
 � # 	� � �
 % � �

� �� � � � � � ��

� � �: (rarely used)

$ � � � � � � �� � ���
 �� � " � � � ��
 �
 � �

18

More Haskell Syntax

Choice

� � � �: (rarely used)

� � � � � �

� � � � � # � � 	 � � � � % � $

� � � � � � � �

� � � �� � �

or (not using “layout”):

� � � � � � � � � � � # � � 	 � � � � % � $ �� � � � � � � � � � � � �� � � �

� $ � � �� � � � �: (somewhat used, especially in textbook)

� � � � � � � � $ # � � 	 � � � � % � �� � � �� � � � � � � � � � � � � � � �

19

Lists
A very useful type. Many powerful and generic functions in
standard Prelude for working with lists, including (see
Section 8.1 in the Haskell Report):

	� � � � � � $ � � � � � � � �� � � � � � �� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �� � � � �� " � � � � � � $ � � �� � $ � � �� � �

� � � � � � � � � � � � � $ � � �� � $ � � �� � � � � � � � � � � � � � � �

� � �� � � � � � � � � � � � � � �� � � � � � � � � � � � � � � 	 � � �� � � �

� �� � � � � � � � 	 � �� � � � � �� � � �� � � � � � � � � � �� � � 	 �

� � � �� �
 �� �� � �� � � � �� � ��
 �� �� � � � � �� � � � � � � �

�� � � � � � � � � � � � � 	 � � � � �� � 	 � � � � 	 � � � � � 	 �

�� � � � � � � 	� � � 	 � 	 � 	 � � � 	 � 	 �
 � � �
 � � � �
 � � � � � � �

 � � � � � � � � ��
 � � � ��
 � � �

Textbook covers the most important of these in Chapter 4 (not
necessarily with the same implementations). Even more
functions can be found in the standard library List.

20

	Algebraic Types
	Examples
	Examples
	Examples
	Examples
	Haskell Classes
	Context
	Overloading vs. Polymorphism
	Default Definitions
	Derived Classes
	Some Built-In Classes and Types
	All Built-In Classes
	Deriving Membership of Classes
	Type Synonyms and Copies
	More Haskell Syntax
	More Haskell Syntax
	More Haskell Syntax
	More Haskell Syntax
	Lists

