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Graph Theory - Motivation
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Social Networks
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This graph might depict Facebook friendship relations, or Twitter follower

relations, or...



Chemical Compounds
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Metabolic Networks
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Metabolic Network of E. coli.



What is a graph?

Vertices: PQ,R,ST
Edges: all the lines
Degree of a vertex: number of edges with that vertex as an end-point



Interpretation:

The graph from the last slide might depict this roadmap. Note that the intersection
of the lines PS and QT is not a vertex, since it does not correspond to a cross-roads



Another Interpretation:

T S

If P, Q, R, Sand T represent football teams, then the existence of an edge might
correspond to the playing of a game between the teams at its end-points. Thus, team P
has played against teams Q, S and T, but not against team R. In this representation, the
degree of vertex is the number of games played by the corresponding team.



Two different graphs? No!

T S

In the right graph we have removed the 'crossing' of the lines PS and QT by drawing the line PS outside the
rectangle PQST. The resulting graph still tells us whether there is a direct road from one intersection to another,

and which football teams have played which. The only information we have lost concerns 'metrical' properties,
such as the length of aroad and the straightness of a wire.



The first scientific article using the term graph
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284 NATURE

[Feb. 7, 1878

8 cm. from the primary. Reverse the wires in the
secondary circuit, reverse the wires in the primary civcuit,
how you please, the mercury always moves fowards the
Point of the capillary.

8. Shouting or singing (excepting the above-mentioned
note) produces no visible effect under the conditions
mentioned in Experiments g, 6, and 7.

9. If the secondary coil be now moved close up, so as
to cover as completely as ible the primary, talfdng to
the telephone with the or?ﬁry voice, z.¢. with moderate
strength and at any pitch, produces a definite movement

The analogy is between atoms and dimary quantics
exclusively,

I compare every binary quantic with a ch 1 atom.
The numg:er of factors (or c:lays, as they ma)y‘be reg;rded

v an obvious geometrical interpretation) in a bin;
!? ic is the analogue of the ber of donds, or atllz
valence, as it is termed, of a chemical atom.

Thus a linear form may be regarded as a monad axm
2 quadratic form as a duad, a cubic form as a triad,
50 on.
An invariant of

is the

a. 1

a syste;n of binary quantics of various
af a chemical sub oy

of the mercury column for each word, some ds of
course giving more movement than others, du¢ the move-
ment is always towards the end of the capillary. Singing
the note mentioned in Experiments 5, 6, and 7 loudly,
produces a movement too large to be measured with the
electrometer.

Reversing the poles of the magnet in the telephone does

5 L
of atoms of corresponding walences. The order of such
invariant in each set of coefficients is the same as the
number of atoms of the corresponding walence in the
chemical compound.
A co-variant is the analogue of an (organic or inorganic)
d radical. The orders in the several sets of co-

not alter the results of Experiments s, 6, 7, and 9.

On mentioning the above results to Dr. Burdon San-
derson, he suggested that the apparently anomalous
behaviour of the electrometer might be accounted for, by
supposing that the mercury moved guicker when a current
gassed towards the point of the capillary than when it

owed in the opposite direction ; so that if a i

efficients corresponding, as for invariants, to the respective
valences of the atoms, the free valence of the compound
radical then becomes identical with the degree of the
co-variant in the variables.
The weight of an invariant is identical with the number
of the bonds in the chemicograph of the log
hemical sub and the weight of the leading term

of rapidly alternating currents be passed through the
instrument, the mercury will always move towards the
int of the capillary, the movement away from the point
ing masked by the sluggishness of the instrument in
that direction. That this explanation is the correct one
is proved by the following experiment :—The current
from two Grove’s cells is sent through a metal reed
vibrating 100 times a second, the contact being made and
broken at each vibration, the primary wire of a Du Bois
Reymond'’s induction-coil is also included in the circuit ; on
g the elect with the secondary coil placed
at an appropriate distance the mercur{ always moves to
the point of the tube whatever be the direction of the
current. F.uj. M. PAGE
Physiological Laboratory, University Coliege,
London, February 2

NOTE.—On February 4 Prof. Graham Bell kindly
placed at my disposal a telephone much more powerful
than any of those I had previously used. On speaking to
this instr e el being in the circuit,
movements of the ry col as_considerable as
those in Experiment 9 were observed.—F. J. M. P,

CHEMISTRY AND ALGEBRA

IT may not be wholly without interest to some of the
readers of NATURE to be made acquainted with
an analogy that has recently forcibly imp d me

(or basic differentiant) of a co-variant is the same as the
number of bonds in the chemicograph of the analogous
compound radical. Every invariant and covariant thus
becomes expressible by a graph precisely identical with a
Kekuléan diagram or chemicograph. But not every
chemicograph is an algebraical one. I show that by an
application of the algebraical law of reciprocity every
a{:gebraical graph of a given invariant will represent the
constitution in terms of the roots of a quantic of a type
reciprocal to that of the given invariant of an invariant
belonging to that reciprocal type. 1 give a rule for the
geometrical multiplication of graphs, 7.e. for constructing
a graph to the product of in- or co-variants whose separate
graphs are given. I have also ventured upon a hypothesis
which, whilst in nowise interfering with existing chemico-
graphical constructions, accounts for the seeming anomal
of the isolated exi a5 " 4 molecales® of
mercury, zinc, and arsenic—and gives a rational explana-
tion of the “ mutual saturation of bonds.”

I have thus been led to see more clearly than ever I
did before the existence of a common ground to the new
mechanism, the new chemistry, and the new algebra.
Underlying all these is the theory of pure colligation,
which applies undistinguishably to the three great
theories, all initiated within the last third of a century or
thereabouts by Eisenstein, Kekulé, and Peaucellier.

Baltimore, January 1 J. J. SYLVESTER

between branches of human knowledge apparently so
dissimilar as modern chemistry and modern algebra. I
have found it of great utility in explaining to non-mathe-
maticians the nature of the investigations which alge-
braists are at present busily at wark upon to make out
the so-called Grundformen or irreducible forms

PALMEN ON THE MORPHOLOGY OF THE
TRACHEAL SYSTEM

DR. PALMEN, of Helsingfors, has recently published

an i ing ir on the tracheal system of

i . He observes that although the gills of cer-

nant to binary quantics taken singly or in systems, and I
have also found that it may be ueg as an instrument of
investigation in purely algebraical inquiries. So much is

tain aquatic larvae are attached to skin very near to
the points at which the spiracles open in the mature
insects, and though spiracles and gills do not co-exist in the

this the case that 1 hardly ever take up Dr. Frankland’s
excpcdmgly valuable “Notes for Chemical Students,”
which are drawn up eT’clusivdy on the basis of Kekul¢’s

q conception of valence,'without derivi -
tions for new researches in the theory of :fg:l‘:lr‘ﬁ‘gl
forms. I will confine myself to a statement of the ground

same segment, yet the point of attachment of the gills
never exactly coincides with the position of the future
spiracle. Moreover, he shows that even during the larval
condition, although the spiracles are not open, the struc-
ture of the stigmatic duct is present, and indeed that it

of the analogy, referring those who may feel an i

opens porarily at each moult, to permit the inner
tracheal membrane to be cast, after which it closes

in the subject and are desirous for further information

about it to 2 memoir which I have written upon it for the

new Americam Fournal of Pure and Agplied Mathe-

;alia, the first number of which will appear early in
ebruary.

again. In fact, then, he urges, the gills and spiracles do
not correspond exactly, either in number or in position,
and there can therefore be between them no genetic
ti He ludes that the i wil
tracheza are not derived from ancestors provided with

N



Directed Graphs (Digraphs)

S

Assume again a graph depicts a roadmap. The study of directed graphs (or digraphs, as we abbreviate them)
arises when making the roads into one-way streets. An example of a digraph is given above, the directions of the

one-way streets being indicated by arrows. (In this example, there would be chaos at T, but that does not stop us
from studying such situations!)



Walks, Paths, and Cycles

Much of graph theory involves 'walks' of various kinds. A walk is a 'way of getting from one vertex to another’,
and consists of a sequence of edges, one following after another. For example, in the above figure P —> Q—>R is
a walk oflength 2, andP —>S —>Q —> T —>S —> R is a walk of length 5. A walk in which no vertex appears
more than once is called a path; for example and P —> Q —> R —> S is a path. A walk in which you end where

you started, for example Q —>S —> T —>Q,, is called a cycle.



Connectedness
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Some graphs are in two or more parts. For example, consider the graph whose vertices are the stations of the Copenhagen
Metro and the New York Subway, and whose edges are the lines joining them. It is impossible to travel from @sterport to
Grand Central Station using only edges of this graph, but if we confine our attention to the Copenhagen Metro only, then we

can travel from any station to any other. A graph that is in one piece, so that any two vertices are connected by a path, is a
connected graph; a graph in more than one piece is a disconnected graph.



Weighted Graphs

Consider the above graph: it is a connected graph in which a non-negative number is assigned to each edge. Such a graph is
called a weighted graph, and the number assigned to each edge e is the weight of e, denoted by w(e).

Example: Suppose that we have a 'map' of the form shown above, in which the letters A to L refer to towns that are
connected by roads. Then the weights may denote the length of these roads.



Shortest Path (between one pair of vertices)

What is the length of the shortest path (=distance) from A to L?

The problem is to find a path from A to L with minimum total weight. This problem is called the Shortest Path Problem. Note
that, if we have a weighted graph in which each edge has weight 1, then the problem reduces to that of finding the number of
edges in the shortest path from A to L.



All-Pairs Shortest Path




All-Pairs Shortest Path : A Solution for Some Cities in Australia
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TABULA POLIOMETRICA GERMANIAE AC PRAECIPUORUM QUORUNDAM LOCORUM EUROPAE.
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(From the “Historic Maps Collection”,
Princeton University Library, link: here)
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Matrix Representations for Graphs

& eeat®

adjacent vertices adjacent edges
fo1o1) 1 0010 0)
1012 1100 1 1

A= M =
010 1 011000
1210 001111

If G is a graph with vertices labelled {1, 2, ...}, its adjacency matrix A is the n x n matrix whose ij-th entry is the number of
edges joining vertexi and vertex j. Two nodes i and j are adjacent if the ij-th entry in the adjcacency matrix is larger than 0.

If, in addition to the vertices, the edges are labelled {1, 2,..., m}, its incidence matrix M is the n x m matrix whose ij-th entry
is 1 if vertexi is incident to edge j and 0 otherwise. The figure above shows a labelled graph G with its adjacency and
incidence matrices.



Adjacency Matrix for Weighted Graphs

(0010 1) (100100

1012 110011
A= M =

0101 011000

Given a weighted graph G, the adjacency matrix A is the matrix whose ij-th entry is the weight of the
edge between vertexi and vertexj.



(

Matrix-Matrix Multiplication
Recap

1()23><
-1 2 2 1

—_ = s =

o DO Ot DO

Ot /) DN W



Matrix-Matrix Multiplication
Recap

—_ = s =

DO DO Ot DO

Ot 4= DN W



Matrix-Matrix Multiplication
Recap



Matrix-Matrix Multiplication

Recap
1 2 3
1 023\ |45 2]|_/6 12 20
—1 2 2 1 1 2 1 | \ 10 14 8
1 2 5

Zero-based Numbering (“Zero indexed”) One-based Numbering (“One indexed”)



Zero-Indexing

Zero-based numbering is a way of numbering in which the initial element of a sequence is assigned the index 0O,
rather than the index 1 asis typical in everyday non-mathematical/non-programming circumstances.

Make sure that it is clear what you mean, when you say, e.g., the “row with index 1” in a matrix.

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, SOME FRoM ZERD.

DIFFERENT TASks CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGOR ITHMS
EXPERT DONALD KNUTH,

“WHO ARE You? How DID.
YOU GET IN MY HOUSE?
/

VAT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

/ :

(picture from xkcd.com)



Matrix-Matrix Multiplication in Python (for Square Matrices)

# Assume M and N are both square (size x size) matrices
def multSquareMatrices(M,N):Jj
size = len(M)
result = [[@ for x in range(size)] for y in range(size)]

for 1 in range(size):
for j in range(size):
for k in range(size):
result[i][j] = result[i][3j] + M[1][k] * N[kI[7]

return result Provided Code: matMult.py
Number of additions per result [i] [j] entry: size
Number of multiplications per result [i] []] entry: size
Number of entries in the result matrix: size x size
Overall number of operations (additions and multiplications): 2 x size x ( size x size )

Overall computational runtime: O (Size3)



Matrix-Matrix Multiplication in Python

# Assume two matrices M and N, not necessarily squared
# (not needed further on in the lecture)
def multGeneral(M,N):

result = [[@ for x in range(len(N[@]))] for y in range(len(M))]

for 1 in range(len(M)):
for j in range(len(N[@])):
for k in range(len(N)):
result[i][j] = result[i][j] + M[1][k] * N[kI[7]

return result

Provided Code: matMult.py




Comments to Python Code

* Creating a list of three O’s :

[0 for i in range(3)]

[0, 0, 0]

[[@ for i in range(3)]
[[0, @, 01, [0, 0, 0]]




M=I[[1, 0, 2, 3],
[_1’ 2’ 2’ 1]]
Matrices in Python: Implemented as Lists of Lists: | _ . , 5
[:4’ 5’ 2]’
M [ 1’ 2’ 1]’
[[19 0: Z, 3]3 [_1’ Z, 2’ IJ] [ 1, 2’ 5]]
S = [[ 1: 2: 0])
" [ 2, 0, 1],
[EL, 2, 31, 4, 5, 21, 1, 2, 11, [1, 2, 51 [-1, 2, 3]]
S print("Initial Matrix M:\n")
[[1, 2; 0]; [2; 8; 1I; [-1; 2; 310 printMatrix(M)

print("Initial Matrix N:\n")
printMatrix(N)

multSquareMatrices(sS,S)
L[5, 2, 21, [1, 6, 31, [0, 4, 11]]

print("M x N:\n")
I printMatrix( multGeneral(M,N) )

“Matrix” dimensions: Provided Code: matMult.py

M has len (M) manyrows and 1en (M[0] ) manycolumns
N has len (N) manyrows and 1len (N[0] ) manycolumns
The result needs to have 1en (M) manyrows and 1en (N[ 0] ) manycolumns



Powers of the Adjacency Matrix

1 2 3 4 5 6
O 1/0 1 0 0 1 0
o [1o10n
A:4000011
511 1 0 1 0 0

(L 6\0 0 0 1 0 0

AP = A x A...x Ais called the k-th power of the adjacency matrix
S

k times
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Theorem:
If G is a graph with adjacency matrix A, and vertices
with indices 1,...,n then for each positive integer k

the ij-th entry of A"
1S

the number of different walks using exactly £ edges
from node 7 to node j
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In Python3

Eule:IntroCS-GraphTheory-2016 daniel$ ipython3 adjacencyMatMult.py
Initial Matrix:

" o', ' 1, " o', ' 1',
def printMatrix(M): <. [, e, o', ' 1,
for row in R: ) o', ' 1, o', ' o,
: [ o', " 0", o', 1'
print(["%¥3.0f" % a for a in row]) ) o1, o1, i, ' e
= " n [' ', ' , 11’ v
print("\n") '
‘ 2-th power
A = [[0,1,0,0,1,0], b
[1’0’1)0’1’0]’
[0’1’930’036:]’
[0,0,0,0,1,1],
[1,1,0,1,0,0],
[0’®’0’1’®,0]]

3-th power

# make a copy of X
R = deepcopy(A)

print("Initial Matrix:\n")

printMatrix(A)
4-th power of A :
for i in range(2,5): Cog 7 g st g
print("%d-th power of A : \n"%1i) o7, v, o2t 6, 7,
R = multSquareMatrices(R,A) ' g:’: éf i? L ;"
printMatrix(R) 7.0 7 s 13",

1', \J 1', 1" 4',

Provided Code: adjacencyMatMult.py

Eule:IntroCS-GraphTheory-2016 daniel$ I



Proof: (also on blackboard)

Let G be a graph with adjacency matrix A, and vertices 1,...,n. We proceed
by induction on k to obtain the result.

Base Case:
Let k =1. A' = A. a;; is the number of edges from i to j, which is identical to
the number of walks of length 1 from 7 to j.

Inductive Step:

Assume true for a positive integer k. Let b;; be the ij-th entry of A* . and let
a;; be the ¢j-th entry of A. By the inductive hypothesis b;; is the number of
walks of length %k from i to j. Consider the ij-th entry of A¥T1 = A4 x AF, i.e,
A,Z-_H = ailblj = aigbgj + ...+ ambnj = 2221 aikbkj. Consider aﬂblj. This is
equal to the number of walks of length 1 from ¢ to 1 times the number of walks
of length k£ from 1 to j. This is therefor equal to the number of walks of length
k + 1 from 7 to j, where 1 is the second vertex. This argument holds for each
vertex m, 1.e., ajmbm; 1s the number of walks from ¢ to j in which m is the
second vertex. Therefore, the sum is the number of all possible walks from ¢
to J.



Algorithm for All-Pairs Shortest Path

Weighted Graph G with weights on edges:

 What is the distance (=length of the
shortest path) between Aand L ?

17

Generalization:

 What are the distances of
ALL paths (=lenghts of ALL
shortest paths) between all
pairs of nodes?

... and how can we find all
these distances?




The Edge Weight Matrix W

Example:
1 2 3 4 5 06
1 ( 0 1 oo oo 2 oo\
2 1 0 2 oo 4 oo
W — 31 oo 2 0 oo oo 3
41 00 o0 oo 0 6 1
51 2 4 oo 6 0 o
6 \oo oo 3 1 oo O )
weights are depicted in red
Definition:

(the weight of the edge (i,5) if the edge (4, 7) exists

Note: Matrix W has entries

Wij =40 it 1 = J corresponding to infinity, as it might
50 else be |mp.os:¢,|ble to reach vertex j from

\ vertex i via 1 edge.

Interpretation:
W,; is the distance from vertex ¢ to vertex j using maximally 1 edge

We assume all weights are not
negative, i.e., larger or equal to O.



A modified Matrix-Matrix Multiplication

1
1
3

— N O

1
4
1

O
O,
NG N
TN W
|
JUNCIING
INGNJURGU
JUNINGIN

MON=R

Definition:
Tij = mink{mik -+ nkj}

Note: this operation is very similar to the
standard matrix-matrix multiplication: however,
Example' for computation of the ij-th entry the

. multiplication is replaced by addition, and
r33 = HllIl{S + 37 1+ 27 2+ 5} — 3 addition is replaced by the minimum operation.




Theorem:
If G is a weighted graph with edge weight matrix W,
and vertices with indices 1,...,n then for each positive
integer k

the ij-thentry of W =W oW o...0W
—

k times

1S
the length of the shortest path from 2 to j
using maximally k edges




Examples:

Considerthe two vertices with index4 and 1in W#

Shortest Path using maximally 4 edges:
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Matrix-Matrix Multiplication in Python (for Square Matrices)

# Assume M and N are both square (size x size) matrices
def multSquareMatrices(M,N):|}
size = len(M)
result = [[@ for x in range(size)] for y in range(size)]

for 1 in range(size):
for j in range(size):
for k in range(size):
result[i][j] = result[i][j] + M[i][k] * N[k]1[3]

return result



Modified Matrix-Matrix Multiplication in Python (for Square Matrices)

def multSquareMatrices(M,N):
size = len(M)
result = [[[thf| for x in range(size)] for y in range(size)]

for 1 in range(size):
for j in range(size):
for k in range(size):
result[i][j] =|minCresult[i][j], M[i][k] [+ N[KI[iDD

return result

. # Assume M and N are both square (size x size) matrices
Standard Matrix- def multSquareMatrices(M,N):|j
Matrix Multiplication: size = len(M

result = [ for x in range(size)] for y in range(size)]

for i in range(size):
for j in range(size):
for k in range(size):

result[i][J] = result[i][j] M[i] [k] E| NLk1L3]
Provided Code: shortestPaths.py return result



Eule:IntroCS-GraphTheory-2016 daniel$ python3 shortestpaths.py

I n Pyth O n 3 Initial Matrix:

2"
65,

3"
5,

[* @, * 1%, Minf", *inf", ¥ .27, “nf"]
[F 4% ' 0", ™ 29 "inf'y ' 4% *nf']
[inf", * 2. ¥ 0% “inf's "inf*, * 3"
- : - : [Minf, T, TEEY, U oY, T @, U 17
W=I[[ o, 1, inf, }nf, 2, }nF], " o2 C 6 0 tinf']
L 1, o, 2, inf, 4, inf], ["inf', '1', 'inf', "
[ inf, 2, 0, inf, inf, 3],
[ inf, inf, inf, @, 6, 1], 2-th power of W :
L 2, 4, inf, 6, 0, inf], T
[ inf, inf, 3, 1, inf, 0@]] TN
3 2,
8 Y 10°,
# make a copy of X Copr 3
R = deepcopy(W) [Hinf”, * &,
print("Initial Matrix:\n") 3-th power of W :
printMatrix(W) o 1
1, o,
for 1 in range(2,5): 3', 12,
print("%d-th power of W : \n"%1) §g : g:
R = multModSquareMatrices(R,W) 6'; ' 5,
printMatrix(R)
4-th power of W :
o', ' 1',
1, ' e,
: 3, ' 2,
Provided Code: shortestPaths.py 7', ' 6,

Note: python3 required because of inf




1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1/0 1 oo oo 2 o0 1{0 1 3 8 2 o 1{0 1 3 8 2 6 10 1 3 7 2 6 1{0 1 3 7 2 6
211 0 2 o 4 oo 211 0 2 10 3 5 211 0 2 6 3 5 211 0 2 6 3 5 211 0 2 6 3 5
W:3 o 2 0 oo oo 3 W2:3 3 2 0 4 6 3 W3:3 3 2 0 4 5 3 W4:3 3 2 0 4 5 3 W5:3 3 2 0 4 5 3
41 00 o0 o 0 6 1 418 10 4 0 6 1 418 6 4 0 6 1 417 6 4 0 6 1 417 6 4 0 6 1
512 4 oo 6 0 o© 512 3 6 6 0 7 512 3 5 6 0 7 512 3 5 6 0 7 502 3 5 6 0 7

6 \occ o 3 1 oo 0 6 \cc 5 3 1 7 O 6\6 5 3 1 7 0 6\6 5 3 1 70 6\6 5 3 1 7 0

W AW 2 LW LW A=W =W °=

Which value of k is necessary, in order to have W*
contain all the pairwise distances of all vertexes?

Answer: n — 1 (which is identical to |V| — 1)

Assume all edge weights are not negative. The number of edges needed for a shortest path can
maximally be n-1, where n is the number of vertices in the graph. If the path would go via n edges,
then you would have to visit at least one vertex twice, but then the path cannot be a shortest path
anymore. Obviously W* = W"~1 for all k>n-1.




Lemma:
If G is a weighted graph with edge weight matrix W,
and vertices with indices 1,...,n then

the ij-thentry of W =W oW o...0W
N———

n — 1 times

1S
the distance from ¢ to

D := W™ ! is called the distance matrix of the graph G.



Computation of the Distance Matrix by Repeated Squaring

(
r \ \ (/ A

W e = (W o W)
wn—tl = (WoW)oW oW oW | 6o...0W ——
v -~

\ e . T/

(. - 7 [\
W5 ) TV

\ . W (2F)

k matrix-matrix multiplication are needed (namely
squaring a matrix k times) in order to compute the
n-2 matrix-matrix multiplication are needed in matrix W(Q"“)

order to compute the distance matrix D = W1

2%has to be larger or equal to n-1, or equivalently,
k has to be larger or equal tolog,(n — 1)

Example: Consider a graph G with 101 vertices. In order to compute the distance matrix D = W1°0 the left
approach needs to make 99 matrix-matrix multiplications. The right approach (called repeated squaring)
requires only 7 matrix-matrix multiplications, as 27 = 128, and D = W28 = w109



Test in Python3

Note:

cell (1log2 (size))returns
the smallest integer larger than
log2 (size),i.e.,Rwill be
the distance matrix after this
for loop.

Provided Code: timing.py

!

|

# make a random edge weight matrix of size x size
size=100
W = [[0@ for x in range(size)] for y in range(size)]
for i in range(size):
for j in range(i,size):

r = randint(0,10)

WEil[Gl = r

Willil = r

# make a copy of the edge weight matrix W
R = deepcopy(W)

print("Comparing runtimes for distance matrix computation for matrices of size %d x %d"%(size,size))

# find the distance matrix by (n-2) subsequent matrix matrix multiplications
# R = CCAWFWD*WD*. . .*W) = WA(n-1)
tl = timeQ
for i1 in range(@,size-2):
R = multModSquareMatrices(R,W)
print("The n-2 multiplications for computing D took %3.2f seconds"%(time()-t1))

# set the R=W (re-initialize)
R = deepcopy(W)

# find the distance matrix by ceil(log_2(n)) subsequent matrix matrix mulitplications via repeated squaring
# R = (CWA2)A2)A2. . .)A2
tl = timeQ)
for i in range(@,ceil(log2(size))):
R = multModSquareMatrices(R,R)
print("The ceil(log_2(n)) multiplications took %3.2f seconds"%(time()-t1))

Eule:IntroCS-GraphTheory-2016 daniel$ python3 timing.py
Comparing runtimes for distance matrix computation for matrices of size 100 x 100

The n-1 multiplications for computing D took 38.08 seconds
The ceil(log_2(n)) multiplications took 2.66 seconds

Eule:IntroCS-GraphTheory-2016 daniel$ |]




The most obvious Application of Computing the Distance Matrix:
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Another Application of the Distance Matrix:
Predicting Boiling Points of Paraffins

In 1947 Harry Wiener defined the Wiener-Index of a graph G in order to predict the
boiling point of different paraffins. He used the graph representation G of the
carbon backbone of a molecule with n carbon atoms and calculated the Wiener-
Index the sum of all distances between all pairs of vertexes, i.e.

1 e

i=1 j=1

He predicted the boilingpoint t; to be

tp =t — (%(wo = WI(G)) + 5.5 (po —p))

with to = 745.42 - log,y(n + 4.4) — 689.4
1

w0=6-(n—|—1)-n-(n—1)

Po=n—3
p = the number of shortest paths ¢ — ... — j of length 3 in G with ¢+ < j

= half of the number of entries ”3” in the distance matrix D



Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

CHs,

H3C CHj

CHjy

The chemical compound

1 2 3 45 6
1(0 2 1 2 2 3)
22 01 2 2 3

Do 31 10112
42 210 21
512 2 1 2 0 3
6\3 321 3 0)

Distance Matrix

]
H g H
! \"C"C'/
H—O) H\
/ XG. / H
& © =
H—(C
g

The carbon backbone

W(G) = L33 Dy =28

i=1 j=1
to = 68.72

1
wo = 56-7=3

pp=6—-3=3
p=3

1 2 3 4 5 6
4 6 1 (0 co 1 oo oo oo\
1 21 00 O 1 oo oo o
3 W — 311 1 0 1 1 oo
41 o0 oo 1 0 oo 1
5 5l o0 oo 1 oo 0 oo
2 6 \oo oo oo 1 oo O/
Graph G Edge Weight Matrix

Note: Depending on how you chose to label your graph, the edge
weight matrix might look different. This won’t matter for the
subsequent calculations.

a \ )

t = to — oy (w0 = W(G) + 55 (1 ~ 1)

08
= 68.72 — (35— 28) + 5.5 (3~ 3)

\ = 49.66 /

Calculation of Wiener Index and other parameters,
as well as the resulting boiling point prediction.




Wiener Index : Boiling Point Prediction, Example (2,2-dimethylbutan)

CHj3

Predicted Boiling Point: tp = 49.66

H5C CH;
Real Boiling Point: #$* a 49.7 — 50.0

CHjy

The prediction of boiling points of paraffins based on the Wiener-Index of the
corresponding molecular graph is amazingly accurate. Try it yourself (see
exercises)! Intuitively, the Wiener-Index quantifies the “compactness” of a graph
(or molecule). Long single chained molecules with n carbons have a smaller
Wiener-Index than molecules that contain many branches. Long molecules are
easier to break, and have usually a lower boiling point.




