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Machine Learning

Machine Learning

An agent is learning if it improves its performance on future tasks after making observations about
the world.
Why learning instead of directly programming?

Three main situations:

e the designer cannot anticipate all possible solutions
e the designer cannot anticipate all changes over time

o the designer has no idea how to program a solution
(see, for example, face recognition)



Machine Learning

Forms of Machine Learning

e Supervised learning
the agent is provided with a series of examples and then it generalizes from those examples to develop an algorithm that
applies to new cases.
Eg: learning to recognize a person’s handwriting or voice, to distinguish between junk and welcome email, or to identify a

disease from a set of symptoms.

e Unsupervised learning
Correct responses are not provided, but instead the agent tries to identify similarities between the inputs so that inputs
that have something in common are categorised together.

Eg. Clustering

e Reinforcement learning:
the agent is given a general rule to judge for itself when it has succeeded or failed at a task during trial and error. The
agent acts autonomously and it learns to improve its behavior over time.

Eg: learning how to play a game like backgammon (success or failure is easy to define)



Machine Learning

Forms of Machine Learning

e Supervised learning (this week)
the agent is provided with a series of examples and then it generalizes from those examples to develop an algorithm that
applies to new cases.
Eg: learning to recognize a person’s handwriting or voice, to distinguish between junk and welcome email, or to identify a

disease from a set of symptoms.

e Unsupervised learning (with Richard Rottger)
Correct responses are not provided, but instead the agent tries to identify similarities between the inputs so that inputs
that have something in common are categorised together.

Eg. Clustering

e Reinforcement learning:
the agent is given a general rule to judge for itself when it has succeeded or failed at a task during trial and error. The
agent acts autonomously and it learns to improve its behavior over time.

Eg: learning how to play a game like backgammon (success or failure is easy to define)
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Supervised Learning

e inputs that influence outputs

inputs = independent variables, predictors, features

outputs = dependent variables, responses

e goal: predict value of outputs

e supervised: we provide data set with exact answers

Example: House price prediction:

Size in m? | Price in M DKK
45 800
60 1200
61 1400
70 1600
74 1750
80 2100
90 2000

price in mio DKE

Machine Learning
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Types of Supervised Learning Artficial Neural Networks

Regression problem: Classification problem:
variable to predict is continuous/quantitative variable to predict is discrete/qualitative
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Given: m points (pairs of numbers) {(x1,y1), (x2,2), ..., (Xm, Ym)}
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Given: m points (pairs of numbers) {(x1,y1), (x2,2), ..., (Xm, Ym)}

Task: determine a model, aka a function g(x) of a simple form, such that

g(Xl) ~ y1,
g(Xz) ~ y2,

&(Xm) = Ym-
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Given: m points (pairs of numbers) {(x1,y1), (x2,2), ..., (Xm, Ym)}

Task: determine a model, aka a function g(x) of a simple form, such that

g(Xl) ~ y1,
g(Xz) ~ y2,

&(Xm) = Ym-

e We denote by y = g(x) the response value predicted by g on x.
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Supervised Learning Problem

Given: m points (pairs of numbers) {(x1, y1), (x2,2), -+ (Xm, Ym) }

Task: determine a model, aka a function g(x) of a simple form, such that

g(Xl) ~ y1,
g(Xz) ~ y2,

&(Xm) = Ym-

e We denote by y = g(x) the response value predicted by g on x.

e The type of function (linear, polynomial, exponential, logistic, blackbox) may be suggested by
the nature of the problem (the underlying physical law, the type of response).
It is a form of prior knowledge.



Machine Learning

Supervised Learning Problem

Given: m points (pairs of numbers) {(x1, y1), (x2,2), -+ (Xm, Ym) }

Task: determine a model, aka a function g(x) of a simple form, such that

g(Xl) ~ y1,
g(Xz) ~ y2,

g(Xm) ~ Ym-

e We denote by y = g(x) the response value predicted by g on x.

e The type of function (linear, polynomial, exponential, logistic, blackbox) may be suggested by
the nature of the problem (the underlying physical law, the type of response).
It is a form of prior knowledge.

~ Corresponds to fitting a function to the data
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Size in m? | Price in M DKK B
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70 1600 £ o .

74 1750 £ .

80 2100 1000

90 2000 :
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. Linear Regression
House Prlce Exa m ple Artificial Neural Networks
Size in m® | Price in M DKK B0

45 800 .

60 1200 R ’

61 1400 g L

70 1600 £ B .

74 1750 £ .

80 2100 1000

90 2000 .

50030 40 50 60 70 80 90 100 110

square meters

Training data set

[ (45,800) ]
60, 1200)
61,1400)
70,1600)

(x1,y1) (
(
(
(74,1750)
(
L(

(x2,¥2)

80, 2100)
90,2000) |

(Xm;ym)



House Price Example

Size in m? | Price in M DKK

45
60
61
70
74
80
90

Training data set

(leyl)
(x2,¥2)

(Xm;ym)

800
1200
1400
1600
1750
2100
2000

[ (45,800) ]
60, 1200)
61,1400)
70,1600)

80, 2100)

(
(
(
(74,1750)
(

L

90, 2000) |
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f(x) = —489.76 + 29.75x

10



House Price Example

Size in m? | Price in M DKK

45
60
61
70
74
80
90

Training data set

(leyl)
(x2,¥2)

(Xm;ym)

800
1200
1400
1600
1750
2100
2000

[ (45,800) ]
60, 1200)
61,1400)

74,1750)
80,2100)

(
(
(70,1600)
(
(

L

2500
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2000

price in mio DKK
o]
=
=

40 50 &0 70

80 90 100 110

square meters

90, 2000) |

f(x) = —489.76 + 29.75x

x v y

45 848.83 800
60 1295.03 1200
61 1324.78 1400
70 1592.5 1600
74 1711.48 1750
80 1889.96 2100
90 2187.43 2000

10



Example: k-Nearest Neighbors
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Example: k-Nearest Neighbors

Regression task

Given: (X17y1)7 tet (vaym)
Task: predict the response value y for a new input x
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Example: k-Nearest Neighbors

Regression task

Given: (Xlayl)ﬁ tet (va)/m)
Task: predict the response value y for a new input x

~ |dea: Let y(x) be the average of the k closest points:
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Example: k-Nearest Neighbors

Regression task

Given: (X17)/1)5 tet (Xm',)/m)
Task: predict the response value y for a new input x

~ |dea: Let y(x) be the average of the k closest points:

1. Rank the data points (x1,y1), ..., (Xm, ¥m) in increasing order of distance from x in the input
space, ie, d(x;, x) = |x; — x|.

2. Set the k best ranked points in Ny(x).

3. Return the average of the y values of the k data points in N,(x).

11
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Example: k-Nearest Neighbors Aricial Neura Networks
Regression task
Given: (x1,y1),- -, (Xm, Ym)
Task: predict the response value y for a new input x
~ |dea: Let y(x) be the average of the k closest points:
1. Rank the data points (x1,y1), ..., (Xm, ¥m) in increasing order of distance from x in the input

space, ie, d(x;, x) = |x; — x|.
2. Set the k best ranked points in Ny(x).
3. Return the average of the y values of the k data points in N,(x).

In mathematical notation:

=1 Y =8k

X,'G/Vk(x)

11



Example: k-Nearest Neighbors

Classification task

Given: (Xlayl)v ) (vaym)
Task: predict the class y for a new input x.
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Example: k-Nearest Neighbors

Classification task

Given: (Xlayl)ﬁ te (va)/m)
Task: predict the class y for a new input x.

~ ldea: let the k closest points vote and majority decide
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Example: k-Nearest Neighbors Arcfcial Neural Networks

Classification task

Given: (x1,y1),- -, (Xm, Ym)
Task: predict the class y for a new input x.

~ ldea: let the k closest points vote and majority decide

1. Rank the data points (x1,y1), ..., (Xm, ¥m) in increasing order of distance from X in the input
space, ie, d(Xi, X) = |x;i — x|.

2. Set the k best ranked points in Ni(x).
3. Return the class that is most represented in the k data points of Nj(x).

12
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Example: k-Nearest Neighbors Arcfcial Neural Networks

Classification task

Given: (x1,y1),- -, (Xm, Ym)
Task: predict the class y for a new input x.

~ ldea: let the k closest points vote and majority decide

1. Rank the data points (x1,y1), ..., (Xm, ¥m) in increasing order of distance from X in the input
space, ie, d(Xi, X) = |x;i — x|.

2. Set the k best ranked points in Ni(x).
3. Return the class that is most represented in the k data points of Nj(x).

In mathematical notation:

y = argmaxgcg = =G(x)
X,‘E/Vk(X)‘Yr‘:G

12



Learning model

UNKNOWN TARGET FUNCTION
f: X~

(ideal credit approval function)

TRAINING EXAMPLES
0O ¥ e s (X0 1)

(historical records of credit customers)

& LEARNING

ALGORITHM

HYPOTHESIS SET
H

(set of candidate formulas)

FINAL

— HYPOTHESIS
g=f

(final credit approval formula)

Machine Learning
Linear Regression
Artificial Neural Networks
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2. Linear Regression
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Linear Regression with One Variable

e The hypothesis set 7 is made by linear functions y = ax + b
and we search in # the line that fits best the data:
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Linear Regression with One Variable
e The hypothesis set 7 is made by linear functions y = ax + b
and we search in # the line that fits best the data:

1. We evaluate each line by the distance of the points (x1, 1), ...,
the vertical direction (the y-direction):

Machine Learning
Linear Regression
Artificial Neural Networks

(Xm, ¥m) from the line in

15
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. . . . Linear Regression
Linear Regression with One Variable L

Artificial Neural Networks

e The hypothesis set H is made by linear functions y = ax + b
and we search in # the line that fits best the data:

1. We evaluate each line by the distance of the points (x1,y1), ..., (Xm, Ym) from the line in
the vertical direction (the y-direction):

Each point (x;, y;), / = 1..m with abscissa x; has the ordinate ax; + b in the fitted line.
Hence, the distance for (x;, y;) is |y; — ax; — b.

15
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Linear Regression with One Variable Arcfcial Neural Networks

e The hypothesis set H is made by linear functions y = ax + b
and we search in # the line that fits best the data:

1. We evaluate each line by the distance of the points (x1,y1), ..., (Xm, Ym) from the line in
the vertical direction (the y-direction):
Each point (x;, y;), / = 1..m with abscissa x; has the ordinate ax; + b in the fitted line.
Hence, the distance for (x;, y;) is |y; — ax; — b.

2. We define as loss (or error, or cost) function the sum of the squares of the distances from
the given points (x1, y1), .-, (Xm» Ym):

m

[(a,b) = Z(y; — ax; — b)? sum of squared errors

i=1

~~ [ depends on a and b, while the values x; and y; are given by the data available.

15
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Linear Regression with One Variable Arcfcial Neural Networks

e The hypothesis set H is made by linear functions y = ax + b
and we search in # the line that fits best the data:

1. We evaluate each line by the distance of the points (x1,y1), ..., (Xm, Ym) from the line in
the vertical direction (the y-direction):
Each point (x;, y;), / = 1..m with abscissa x; has the ordinate ax; + b in the fitted line.
Hence, the distance for (x;,y;) is |y; — ax; — bl.

2. We define as loss (or error, or cost) function the sum of the squares of the distances from
the given points (x1, y1), .-, (Xm, Vm):

m

[(a,b) = Z(y,- — ax; — b)? sum of squared errors

i=1

~~ [ depends on a and b, while the values x; and y; are given by the data available.

3. We look for the coefficients a and b that yield the line of minimal loss.

15
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HOUSE P I’ice Exa m ple Artificial Neural Networks
Training data set =0
[ (45,800) ] 2000 * .
Cav)] [ 182 .
(2. 2) (60, 1200) g )
_ (61,1400) £ 100 ’
~ {(70,1600) f -'
(74,1750) % oo
: (80, 2100) .
Oems ym)d | (90, 2000) | N
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HOUSE P I’ice Exa m ple Artificial Neural Networks

Training data set =0
[ (45,800) ] 2000

Can)] | 1% )

(2. 2) (60, 1200) g
_ (61,1400) £ 10

~ |(70,1600) F
(74,1750) % oo

: (80, 2100)

Oems ym)d | (90, 2000) | N

square meters

f(x) = 29.75x — 489.76



House Price Example

Training data set

(X17y1)
(x2, y2)

(Xm;ym)

[ (45,800) ]
60,1200)
61,1400)
70,1600)

80,2100)

(
(
(
(74,1750)
(

L

90,2000) |

f(x) = 29.75x — 489.76

X Yy y

45 848.83 800
60 1295.03 1200
61 1324.78 1400
70 1592.5 1600
74 1711.48 1750
80 1889.96 2100
90 2187.43 2000

price in mio DKK

2500

2000

1500

1000

500

Machine Learning
Linear Regression
Artificial Neural Networks

60 70 80 20 100 1o
square meters
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House Price Example

Training data set

(X17y1)
(x2, y2)

(Xm;ym)

[ (45,800) ]
60,1200)
61,1400)
70,1600)

80,2100)

(
(
(
(74,1750)
(

L

90,2000) |

f(x) = 29.75x — 489.76

X Yy y

45 848.83 800
60 1295.03 1200
61 1324.78 1400
70 1592.5 1600
74 1711.48 1750
80 1889.96 2100
90 2187.43 2000

price in mio DKK

2500

Machine Learning
Linear Regression
Artificial Neural Networks

2000

1500

1000

40 50 &0 70

+(1200 — 1295.03)?
+(1400 — 1324.78)?
+(1600 — 1592.5)2

+(1750 — 1711.48)?
+(2100 — 1889.96)?
+(2000 — 2187.43)?

80 20 100 1o
square meters

=>"i—-9)=
= (800 — 848.83)?

97858.86

16



. Lin. egressiol
House Price Example R Nural Networks

For

f(x) = b+ ax

L(a, b) = X7, (vi = 9)
= (800 — b—45-2a)°
+(1200 — b — 60 - a)
+(1400 — b 61-a)
(1600 — b — 70 - a)?
(1750 — b 74 - a)
(2100 — b — 80 - a)
( )

+
+
+
+(2000—bh—90- a




Machine Learning
Linear Regression

Analytical SOlution Artificial Neural Networks

Theorem (Closed form solution)

The value of the coefficients of the line that minimizes the sum of squared errors for the given
points can be expressed in closed form as a function of the input data:
m - —_
>imi(xi —X)(yi — )

a= b=y —ax

Z;n:1(xi —Xx)?

where:

Proof: (not in the curriculum of DM534)
[Idea: use partial derivaties to obtain a linear system of equations that can be solved analytically]

18



Linear Regression

Learning Task: Framework

Learning = Representation + Evaluation + Optimization

e Representation: formal language that the computer can handle. Corresponds to choosing the
set of functions that can be learned, ie. the hypothesis set of the learner. How to represent the
input, that is, which input variables to use.

e Evaluation: definition of a loss function

e Optimization: a method to search among the learners in the language for the one minimizing
the loss.

19



Outline

2. Linear Regression
Extensions

Machine Learning
Linear Regression
Artificial Neural Networks
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Linear Regression with Multiple Variables

Machine Learning
Linear Regression
Artificial Neural Networks

There can be several input variables (aka features). In practice, they improve prediction.

Size in m?  # of rooms Price in M DKK

45 2 800
60 3 1200
61 2 1400
70 3 1600
74 3 1750
80 3 2100

4 2000

90

21



Linear Regression with Multiple Variables

Machine Learning
Linear Regression
Artificial Neural Networks

There can be several input variables (aka features). In practice, they improve prediction.

In vector notation:

Size in m?  # of rooms Price in M DKK
45 2 800
60 3 1200
61 2 1400
70 3 1600
74 3 1750
80 3 2100
90 4 2000
(%1, 1) B
Xi

(X2, y2)

(Xm» Ym)

21



. - Machine Learning
k-Nearest Neighbors Revisited B etworke
Case with multiple input variables

Regression task

Given: (X1,y1), -+, (X, Ym)
Task: predict the response value y for a new input X

~ |dea: Let y(X) be the average of the k closest points:

1. Rank the data points (X1, y1), ..., (Xn, ¥m) in increasing order of distance from x in the input
space, ie, d(x;,X) = /> (xij — x;)?.

2. Set the k best ranked points in N (X).

3. Return the average of the y values of the k data points in Ny (X).

In mathematical notation:

D=1 Y vi=e®

X €N (X)

~ It requires the redefinition of the distance metric, eg, Euclidean distance

22



. . . Machine Learning
k-Nearest Neighbors Revisited A e Networks

Case with multiple input variables

Classification task

Given: (X1, y1)y -+ (Xms Ym)
Task: predict the class y for a new input X.

~ |dea: let the k closest points vote and majority decide

1. Rank the data points (X1, y1),-- ., (Xm,¥m) in increasing order of distance from X in the input
space, ie, d(X;, X) = /Zj(xij — xj)2.

2. Set the k best ranked points in Ni(x).

1-Nearest Neighbor Classifier

3. Return the class that is most represented in the k data points of Ng(X)

In mathematical notation:

P 1
G(X) = argmaxgeg Z p
% ENK(R)]yi=G

23



Linear Regression Revisited

Representation of hypothesis space if only one variable (feature):

h(x) = 6 + 61x linear function

Machine Learning
Linear Regression
Artificial Neural Networks
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Linear Regression Revisited Artificial Neural Networks

Representation of hypothesis space if only one variable (feature):
h(x) = 6 + 61x linear function
if there is another input variable (feature):

h(X) =0y + O1x1 + boxo = h(é: )?)

24



Machine Learning
Linear Regression

Linear Regression Revisited Artifcial Neural Networks

Representation of hypothesis space if only one variable (feature):
h(x) = 6 + 61x linear function

if there is another input variable (feature):
h(x) = 0 + O1x1 + bax2 = h(F, %)

for conciseness, defining xg = 1

24
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Linear Regression Revisited Artificial Neural Networks

Representation of hypothesis space if only one variable (feature):
h(x) = 6 + 61x linear function

if there is another input variable (feature):
h(x) = 0 + O1x1 + bax2 = h(F, %)

for conciseness, defining xg = 1

Notation:
e p num. of features, 4 vector of p + 1 coefficients, g is the bias
e Xx;; is the value of feature j in sample /, for i =1..m,j =0..p

e y; is the value of the response in sample /

24



Linear Regression Revisited

Representation of hypothesis space if only one variable (feature):
h(x) = 6 + 61x linear function

if there is another input variable (feature):
h(x) = 0 + O1x1 + bax2 = h(F, %)

for conciseness, defining xg = 1

Notation:
e p num. of features, 4 vector of p + 1 coefficients, g is the bias
e x; is the value of feature j in sample i, for i = 1..m,j = 0..p

e y; is the value of the response in sample /

Machine Learning
Linear Regression
Artificial Neural Networks

24



Linear Regression Revisited

Evaluation

loss function for penalizing errors in prediction.

Most common is squared error loss:

Machine Learning
Linear Regression
Artificial Neural Networks

loss function

25



Machine Learning
Linear Regression

Linear Regression Revisited Arhcin Nearal Netvworks

Evaluation
loss function for penalizing errors in prediction.
Most common is squared error loss:

m m P

Z(_’) = Z ()/i - h(§ 2)) = Z Yi— Z 0;x; loss function

i=1 i=1 j=0



Linear Regression Revisited

Evaluation

loss function for penalizing errors in prediction.

Most common is squared error loss:

L(0) =

Optimizati
min [(
q

m
i=1

on

—,

)

m

i=1

p

> (y,' - h(@ﬁ)y = | vi—D 0

Jj=0

Machine Learning
Linear Regression
Artificial Neural Networks

loss function

25



Machine Learning
Linear Regression

Linear Regression Revisited Artifcial Neural Networks

Evaluation
loss function for penalizing errors in prediction.
Most common is squared error loss:

2

m m P
L(0) = Z < — h(0, % ) Z yi— Z 0;x; loss function
i=1 i=1 Jj=0
Optimization
min [( _’)

g

~> Although not shown here, the optimization problem can be solved analytically and the solution
can be expressed in closed form.



Multiple Variables: Example

T Z i z
174
3 i
§ =
® 7554

Machine Learning
Linear Regression
Artificial Neural Networks
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Polynomial Regression

It generalizes the linear function h(x) = ax + b to a polynomial of degree k

Machine Learning
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Artificial Neural Networks
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Polynomial Regression

It generalizes the linear function h(x) = ax + b to a polynomial of degree k
Representation
h(x) = poly(f, x) = 6o + O1x + - - - + Ox*

where k < m — 1 (m number of training samples).

Machine Learning
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Artificial Neural Networks
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Polynomial Regression

It generalizes the linear function h(x) = ax + b to a polynomial of degree k

Representation

h(x) = poly(f, x) = 6o + O1x + - - - + Ox*

where k < m — 1 (m number of training samples).
~~ Each term acts like a different variable in the previous case.

i:[lxx

2

x]

Machine Learning
Linear Regression
Artificial Neural Networks
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Linear Regression

Polynomial Regression AR eoworks
It generalizes the linear function h(x) = ax + b to a polynomial of degree k
Representation
h(x) = poly(f, x) = fo + O1x + - + Ohex*

where k < m — 1 (m number of training samples).
~~ Each term acts like a different variable in the previous case.

X = [lxx2 ...xk}
Evaluation Again, we use the loss function defined as the sum of squared errors loss:

16 =" (- pob(#.%)’

i=1
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Polynomial Regression Artificial Neural Networks
It generalizes the linear function h(x) = ax + b to a polynomial of degree k
Representation
h(x) = poly(6, x) = fo + 1x + - - + Oex

where k < m — 1 (m number of training samples).
~~ Each term acts like a different variable in the previous case.

i:[lxx2...xk}

Evaluation Again, we use the loss function defined as the sum of squared errors loss:

[(5) = Z <y,- - P0|Y(57 2))2 = Z (yi— 00— b1x; — - — 9kX,-k)2

i=1 i=1
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Polynomial Regression

Optimization:

min L z"’: (y, — poly( 9 ))

q

'Mg Ik

Il
A

in

|
3

(vi — 0o — O1x; —

1

this is a function of k + 1 coefficients 0, - - -

. fgkxl.kf

0.

Machine Learning
Linear Regression
Artificial Neural Networks
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Polynomial Regression Artificial Neural Networks

Optimization:

. . 2
min L = min . — poly(#, X
in () =min (vi — poly(d. %))
= minz (y,- — 0o —O1x; — -+ — Hkxl-k)2
i=1
this is a function of k + 1 coefficients g, - - - , 0.

~ Although not shown here, also this optimization problem can be solved analytically and the
solution can be expressed in closed form.
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Polynomial Regression: Example Arcfcial Neural Networks

s --.-o° . . * 4
2r : + . 1

-3 "--- . . i

5L TN . '._

_6
0.0 02 04 06 0.8 1.0



Polynomial Regression: Example

Linear Regression
2— T T T

Machine Learning
Linear Regression
Artificial Neural Networks
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Polynomial Regression: Example

Polynomial of order 3

Machine Learning
Linear Regression
Artificial Neural Networks
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Overfitting

Machine Learning
Linear Regression
Artificial Neural Networks

30



Training and Assessment

Avoid peeking: use different data for different tasks:

Training and Test data

Machine Learning
Linear Regression
Artificial Neural Networks
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Machine Learning
Linear Regression

Tra i n i ng a nd Assessment Artificial Neural Networks

Avoid peeking: use different data for different tasks:

Training and Test data

e Coefficients learned on Training data
o Coefficients and models compared on Validation data

e Final assessment on Test data

31



Machine Learning
Linear Regression

Tra i n i ng a nd Assessment Artificial Neural Networks

Avoid peeking: use different data for different tasks:

Training and Test data

e Coefficients learned on Training data
o Coefficients and models compared on Validation data

e Final assessment on Test data
Techniques:

e Holdout cross validation

e If small data:
k-fold cross validation
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Machine Learning
Linear Regression

Tra i n i ng a nd Assessment Artificial Neural Networks

Avoid peeking: use different data for different tasks:
Training and Test data

e Coefficients learned on Training data
o Coefficients and models compared on Validation data

e Final assessment on Test data

Techniques:
. . [=}

e Holdout cross validation 1o e v o ETE Lol °
2 ° @ ° o
Eo ou ’Jcﬂ% ﬂo %ouu 0T39|Se°lqn0caeo Du
2@ o o & % o “
2 0% €o %

o |f small data: M R N N AR I I

. . s - T
k-fold cross validation Bl o T oL Lo e TmRmingSetx Lo o e
e N o no °i° % nD o ° 077777777.00 & ° o
° 41 95 75
Sampile index
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Machine Learning

. Linear Regression
Model Companson Artificial Neural Networks

k number of coefficients, eg, in polynomial regression the order of the polynomial
Erwms root mean square of loss

—6— Training
—6e— Test

0.5

Erus
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Outline

3. Artificial Neural Networks

Machine Learning
Linear Regression
Artificial Neural Networks
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The Biological Neuron

A neuron in a living biological system

Axonal arborization

\ Axon from another cell

Synapse
Dendrite

Nucleus

\/

Synapses

Cell body or Soma

Artificial Neural Networks
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McCulloch—Pitts “unit” (1943)

Activities within a processing unit

Processing unit

Machine Learning
Linear Regression
Artificial Neural Networks

wy

w>

Wz

Compute effective input:
VW +VoWo+ VW3

Compare effective
input to threshold
value.

Produce output
ofO0or 1. l—
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McCulloch—Pitts “unit” (1943)

Activities within a processing unit

Machine Learning
Linear Regression
Artificial Neural Networks

\& ) )
Processing unit
T T
wy | i |
Vs Compute effective input: : Compare effective : Produce output
> W, , input to threshold | of Oor 1. | »
ViW1+VaWa+ VW3 | value. I
ws | |
| 1
V3
T -2
—>» 3 1.5 —>
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Generalization of McCulloch—Pitts unit Artifcial Neural Networks

Let a; be the j input to node i.
Then, the output of the unit is 1 when:

7231 + 322 — 133 2 1.5

— .
or equivalently when:
—» 3 1.5 —>
—1.5—-2a1+3a,—1a3 >0
|

and, defining ap = —1, when:

15390 —2a; +3a, —1laz >0

In general, for weights w;j; on arcs ji a neuron outputs 1 when:

p
E wjia; > 0,
j=0

and 0 otherwise. (We will assume the zeroth input ag to be always —1.)



Machine Learning
Linear Regression

Generalization of McCulloch—Pitts unit Arcifcial Neural Networks

Hence, we can draw the artificial neuron unit /:

a1
T v
a2 ———H w2 woi > i

N W3i
a3

also in the following way:

where now the output a; is 1 when the linear combination of the inputs:
P
in,-:ZWj,-aj:vV,--aT f:[—lalaQ---ap]
Jj=0

is > 0.
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Generalization of McCulloch—Pitts

Output is a function of weighted inputs. At unit /

P

ai=g(x)=g| > wa

Jj=0

Machine Learning
Linear Regression

un it Artificial Neural Networks

a; for activation values;
w;; for weight parameters
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Generalization of McCulloch—Pitts unit Artifcial Neural Networks

Output is a function of weighted inputs. At unit /

a; for activation values;
w;; for weight parameters

\

Input Input  Activation Qutput
Links Function Function Output Links

Changing the weight wy; moves the threshold location

39



Activation functions

Non linear activation functions

A g(x;)

+1

y

=

step function or threshold function
(mostly used in theoretical studies)

Artificial Neural Networks

Ag( X;)

1/(1 4 e™)
+1

-

X

continuous activation function, e.g., sigmoid
function 1/(1 + e~ 7)
(mostly used in practical applications)
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Activation functions

Machine Learning
Linear Regression
Artificial Neural Networks

Hane Plot Equation Derivative
Tdentity / fle)==x flz)=1

0 for x<0 0 for #0
sy s | f(r)={ 1 for z>0 f'(’)g-‘){ ? for z io
Loglstic fak, jsnas 1 y
st | EERRERREERE S(2) = T Flz) = S(=)1 - £(=)

THEE 2 ,
i 7_7/ f(x) = tanh(z) = = flz)=1- f(z)?
L B , 1

sretan _7/ £(z) = tan™'(z) ra@) =g
Rectified / 0 for z<0 0 for a<0
Linear Tnit fi(z)= { fa) = {
P z for >0 1 for 220
Parameteric
Rectificd _Jaz for <0 ryon[ S for sz <0
Linear Unit / f(x)_{ x for >0 f(l)_{ 1 for 2>0
(PReL) 2]
ERcpeniial / a(e* —1) for 2 <0 7 f(z)+a for <0
'E;:;‘E]“mt — J)= { z for 2>0 fa@) = { 1 for x>0
SoftPlus 1/ f(x) = log,(1+ €%) fz)= 1_:'?
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Implementing logical functions Artfcal Neural Nesworks

Wp=1.5 Wp= 0.5 Wp=-0.5

AND OR NOT

But not every Booelan function can be implemented by a perceptron. Exclusive-or circuit cannot
be processed (see next slide).
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Implementing logical functions Artfcal Neural Nesworks

Wp=1.5 Wp= 0.5 Wp=-0.5

AND OR NOT
But not every Booelan function can be implemented by a perceptron. Exclusive-or circuit cannot
be processed (see next slide).

McCulloch and Pitts (1943) first mathematical model of neurons. Every Boolean function can be
implemented by combining this type of units.

Rosenblatt (1958) showed how to learn the parameters of a perceptron. Minsky and Papert (1969)
lamented the lack of a mathetical rigor in learning in multilayer networks. a2



Expressiveness of single perceptrons

Consider a perceptron with g = step function

At unit / the output is 1 when:

p
E wjix; >0 or wi-x>0
j=0

Machine Learning
Linear Regression
Artificial Neural Networks
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Expressiveness of single perceptrons Arsfcial Neural Neworks

Consider a perceptron with g = step function
At unit / the output is 1 when:
P
Zvvj,-xj>0 or wj-X>0
j=0
Hence, it represents a linear separator in input space:
- line in 2 dimensions
- plane in 3 dimensions
- hyperplane in multidimensional space

1 X1
1 o 1 O
?
0 0
0 1 X 0 1 X
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Expressiveness of single perceptrons Arsfcial Neural Neworks

Consider a perceptron with g = step function
At unit / the output is 1 when:
P
Zvvj,-xj>0 or wi-Xx>0
j=0

Hence, it represents a linear separator in input space:
- line in 2 dimensions
- plane in 3 dimensions
- hyperplane in multidimensional space
These points are not

X X1 linearly separable
1 ) 1 O
?
0 0
0 1 X 0 1 X

43



Machine Learning
Linear Regression
Artificial Neural Networks

Network structures

Structure (or architecture): definition of number of nodes, interconnections and activation
functions g (but not weights).

a4



Network structures Artificial Neural Networks

Structure (or architecture): definition of number of nodes, interconnections and activation
functions g (but not weights).

o Feed-forward networks:
no cycles in the connection graph

o single-layer perceptrons (no hidden layer)

e multi-layer perceptrons (one or more hidden layer)

Feed-forward networks implement functions, have no internal state

a4



Network structures Artificial Neural Networks

Structure (or architecture): definition of number of nodes, interconnections and activation
functions g (but not weights).

o Feed-forward networks:
no cycles in the connection graph

o single-layer perceptrons (no hidden layer)

e multi-layer perceptrons (one or more hidden layer)

Feed-forward networks implement functions, have no internal state

e Recurrent networks:
connections between units form a directed cycle.
— internal state of the network
exhibit dynamic temporal behavior (memory, apriori knowledge)
— Hopfield networks for associative memory

a4



Feed-Forward Networks — Use

Neural Networks are used in classification and regression

e Boolean classification:
- value over 0.5 one class
- value below 0.5 other class

e k-way classification
- divide single output into k portions
- k separate output units

e continuous output
- identity or linear activation function in output unit

Artificial Neural Networks
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Outline

3. Artificial Neural Networks
Single-layer Networks

Machine Learning
Linear Regression
Artificial Neural Networks
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Single-layer NN Arsiial Neural Necworks

Perceptron output

1
0.8 / “
i
06 i
04 ”/,’/’///I///
0.2 % -4
0
Input Output X~ 2 4
Units W Units

Output units all operate separately—no shared weights
Adjusting weights moves the location, orientation, and steepness of cliff

a7



Outline

3. Artificial Neural Networks

Multi-layer perceptrons

Machine Learning
Linear Regression
Artificial Neural Networks
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Multilayer perceptrons

Layers are usually fully connected;
number of hidden units typically chosen by hand

Output units a
W

Hidden units kY
Vi

Input units a

(a for activation values; W for weight parameters)

Artificial Neural Networks
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M u |t| |ayer Feed—forwa rd Artificial Neural Networks

Feed-forward network = a parametrized family of nonlinear functions:

as = g(wss - a3+ was - a4)

=g(wss-g(waz-a1+wa3-a2)+was-g(wia- a1+ wog-az))

Adjusting weights changes the function: do learning this way!

50



Neural Network with two layers

Machine Learning
Linear Regression
Artificial Neural Networks

What is the output of this two-layer network on the input a; = 1, 2, = 0 using step-functions as

activation functions?

—— 15 — -2

—» Output
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Neural Network with two layers Arcfcial Neural Networks
What is the output of this two-layer network on the input a; = 1, 2, = 0 using step-functions as

activation functions?
Input
\\» 1

1 I
—— 15 ———| -2 .5 —» Output

1 —

The input of the first neuron (node 3) is:

ijgaj:W13-31+W23‘a2:1-1+1-011
J

which is < 1.5, hence the output of node A is a3 = g(}_; wj3a;) = 0.

51



Machine Learning
Linear Regression

Neural Network with two layers Arcfcial Neural Networks
What is the output of this two-layer network on the input a; = 1, 2, = 0 using step-functions as

activation functions?
Input
\‘\. 1

1 I
—— 15 ———| -2 .5 —» Output

1 —

The input of the first neuron (node 3) is:

ijgaj:W13-31+W23'a2:1-1+1-011
J
which is < 1.5, hence the output of node A is a3 = g(}_; wj3a;) = 0.
The input to the second neuron (node 4) is:
ZVVJ'43J':W14'31+W34'a3+W24'324:1'172'0%*1'021
J

which is > 0.5, hence the output of the node 4 is a3 = g(>_: wjsa;) = 1.
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Expressiveness Of ML PS Artificial Neural Networks

All continuous functions with 2 layers, all functions with 3 layers

hy(X, %) 7
///7"// 7
1/
0.8 ///”///{’f///’fr’;”’;/f/'r
i ///// h f/// ’/{, /Ir/’r
0.6 i
I
04 o
)
02 ) 4

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump

Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (Minsky & Papert, 1969)
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A Practical Example

Sharp turn Sharp turn
to left Straight to right

7\

Processing
units

Machine Learning
Linear Regression
Artificial Neural Networks

Deep learning =

convolutional neural networks =
multilayer neural network with structure
on the arcs

Example: one layer only for image
recognition, another for action decision.

The image can be subdivided in regions
and each region linked only to a subset of
nodes of the first layer.
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Numerical Example

Widih

Binary Classification

Machine Learning
Linear Regression
Artificial Neural Networks

The Fisher's iris data set gives measurements in centimeters of the variables:
petal length and petal width for 50 flowers from 2 species of iris: iris setosa, and iris versicolor.

iris.data:

Petal Dimensions in Iris Blossoms,

45 Petal.Length
s 4.9
404 s
s S 5.5
s
a5 S Sgsg v, 5.4
S Sg v v 6.0
30 s VAR, v
v WV 5.2
Vovw
25 vV 5.8
s v v
20 v
15
S Setosa Petls
101

T T T T T
4 5 6 7 8

Length

Petal.Width Species id
3.1 setosa
2.6 versicolor
3.0 versicolor
3.4 versicolor
3.4 setosa
2.7 versicolor

B O R R PO

Two classes encoded as 0/1

54



Perceptron Learning

Machine Learning
Linear Regression
Artificial Neural Networks

In 2D, the decision surface of a linear combination of inputs gives: w - X = constant, a line!

Training the perceptron = searching the line that separates the points at best.

Petal Dimensions in Iris Blossoms

45 -

4.0 |

35 -

3.0

Width

25 -

2.0

15 o

1.0 o

s
s
s S
s
s s 8.8 v
s v
s s g Y
s VARV, v
R
v o WY
v W
vV
s v v
v
V Versicolor Petals
5 6 7

Length
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Perceptron Learning Arifcial Nearal Networks

We try different weight values moving towards the values that minimize the misprediction of the
training data: the red line.
(Gradient descent algorithm) (Rosenblatt, 1958: the algorithm converges)

Petal Dimensions in Iris Blossoms

45 -

4.0 |

35 -

3.0

Width

25 -

2.0

15 | —
|'s— Setosa Petals
V Versicolor Petals

1.0 o

T T T T T
4 5 6 7 8

Length
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