
Department of Mathematics and Computer Science

University of Southern Denmark, Odense

October 4, 2021

Marco Chiarandini

DM534, Introduction to Computer Science Autumn 2021

Lecture Notes on Machine Learning

Contents

1 Linear Regression 1

1.1 Single input variable . 1

1.2 Multiple input variables . 2

1.3 Higher degree polynomial functions . 3

2 Arti�cial Neural Networks 4

2.1 Arti�cial neuron models: perceptron and sigmoid neurons 4

2.1.1 Perceptrons . 4

2.1.2 Sigmoid neurons . 5

2.1.3 Linear separators . 6

2.2 Multilayer neural networks . 7

In the task of machine learning that deals with supervised learning, we are given a set of

observations consisting of values of some input variables (features) and values of a corresponding

response, and the goal is to determine whether there is an association (for example, a function)

between those input variables and the response. In other terms, we wish to determine an accurate

model to describe those training data and then to use this model to predict the response on a new

unseen input. Here, we look at two types of such models: linear regression and neural networks.

1 Linear Regression

1.1 Single input variable

Consider an event y ∈ Y that we assume depends on a variable x ∈ X . For example, let y be the
value of the �nal grade of a student in an exam and x the number of hours the student devoted

to the study of the subject.

A learning model on a set of training samples {(x1, y1), (x2, y2), . . . , (xm, ym)} seeks a goal

function g : X → Y that best approximates an unknown function f from which the training set

is assumed to have been generated. Then, for all those situations, in which an input x is readily

available, but the output y is unknown, we can predict y using ŷ = g(x) where ŷ represents the

resulting prediction for y using the estimated function g.
In linear regression the set of candidate functions H, from which g has to be selected, is

represented by all functions h of the form ha,b(x) := ax+ b. Hence, the form of g is �xed while

the parameters a and b can be adjusted to �nd a function from the family H that for any input

x approximates well the response y.

The most common way to evaluate a function h ∈ H on any data point (x, y) is the squared

error that accounts for the loss between the measured value y and the predicted value ŷ = ha,b(x):

L(y, ha,b(x)) = (y − ŷ)2 = (y − ha,b(x))2. (1)

Here, we considered (x, y) as variables to write a general model that is valid both for data already

observed belonging to the training set and for data not yet observed like those we might be using

1

DM534 � Autumn 2021 Lecture Notes

for the �nal assessment of the model or a prediction to use in practice. On the given set of m
training samples we can evaluate a function ha,b by calculating the total training error :

L̂a,b =

m∑
i=1

L̂(yi, ha,b(xi)) =

m∑
i=1

(yi − ha,b(xi))2 =
m∑
i=1

(yi − ŷi)2. (2)

Note that in Eq. (2), we used the hat symbol to indicate that, di�erently from Eq. (1), the values

of the variables x and y are now known. (Hence, the hat symbol is used here with a di�erent

meaning than the one you might have used in the gymnasium to represent tvær vektor.)

Finding the function g ∈ H that minimizes L̂a,b corresponds to �nding the values of the

parameters a and b for which L̂a,b is minimum. Hence, now xi and yi are given and known, while

a and b are unknown variables whose value we want to determined. We could proceed by trial

and error. However, in this case we can use Calculus and the theory of partial derivatives to �nd

that the values of a and b that minimize L̂a,b can be expressed in closed form. They are given

in the slides. We do not need to remember those formulas as any software, including several

Python modules (eg, scikit-learn), have them already implemented in their methods.

The linear model above can be enhanced by including:

� multiple input variables (features) (x1, x2, . . . , xp)

� higher degree terms to represent polynomial functions

� basis functions (generalization of polynomial functions, not treated here).

1.2 Multiple input variables

We consider now the case where instead of one single input variable we have several. In the

exam grade example, beside the number of study hours we might suspect that also the age of the

student has an in�uence on the �nal grade. So the data set consists of the values of two input

variables, the number of study hours and the age, and the values of the corresponding response.

Consistently with the previous section, we use m to represent the number of distinct data

points, or observations, in our training sample. We let p denote the number of variables that

are available for use in making predictions. So, in our example, p = 2 and, if we collected these

measurements for 100 students, then m = 100.
We let xij represent the value of the jth variable for the ith observation, where i = 1, 2, . . . ,m

and j = 1, 2, . . . , p. Throughout this document i is used to index the samples or observations

(from 1 to m) and j is used to index the variables (from 1 to p).
We can write the measurements of an observation i for i = 1, . . . ,m as a vector ~xi of length

p, containing the p variable values for the ith observation. That is,1

~xi =
[
xi1 xi2 . . . xip

]
.

For example, for the exam grade data, ~xi is a vector of length 2, consisting of the values of age

and study hours for the ith individual.

Then our observed data consists of {(~x1, y1), (~x2, y2), ..., (~xm, ym)}, where each ~xi is a vector
of length p. (If p = 1, then xi is simply a scalar and the notation falls back to the one used in

the previous section.)

We can subdivide the learning task in three parts.

1Vectors are by convention represented as columns and the T notation is used to denote the transpose of a

vector. However, in this document we represent vectors as row vectors.

2

DM534 � Autumn 2021 Lecture Notes

1. Representation of the hypothesis set H. In linear regression, H is made by all linear models

of the p features:

h(x1, x2, . . . , xp) := θ0 + θ1x1 + θ2x2 + · · ·+ θpxp
= hθ0,θ1,θ2,...,θp(x1, x2, . . . , xp)

(3)

Eq. (3) can be written in a simpler way using the vector notation introduced above

and recalling the de�nition of scalar product between vectors. De�ne x0 = 1, ~x =[
x0, x1, x2, . . . , xp

]
and ~θ =

[
θ0, θ1, θ2, . . . , θp

]
, then we can rewrite (3) as:

h~θ(~x) =
~θ · ~x =

p∑
j=0

θjxj

The parameter θ0 de�ning the intercept is called in machine learning the bias. The number

of θ coe�cients to determine for this linear model is p+ 1.

For the exam grade case:

h(x1, x2) := θ0 + θ1x1 + θ2x2 =

2∑
j=0

θjxj = ~θ · ~x = h~θ(~x) = hθ0,θ1,θ2(x1, x2)

and the number of θ coe�cients is 3.

2. Evaluation: The loss function can be de�ned as:

L(y, h~θ(~x)) =
(
y − h~θ(~x)

)2
3. Optimization: We calculate the loss function on the training samples as the sum of squared

errors:

L̂~θ =

p∑
i=1

(
yi − h~θ(~xi)

)2
and we look for the coe�cients ~θ that minimize the total training error L̂~θ. In mathematical

notation:

min
~θ
L̂~θ.

Again, with notions from Calculus and Linear Algebra the optimal values for ~θ can be

expressed in closed form as a function of the training sample data.

1.3 Higher degree polynomial functions

1. Representation of the hypothesis space H. Let ~xT =
[
1, x, x2, . . . , xp

]
then

h~θ(x) = poly(~θ, ~x) = θ0 + θ1x+ · · ·+ θpx
p

where p ≤ m− 1. Each term acts like a di�erent variable in the previous case.

2. Evaluation: the loss function can be rede�ned as

L(y, h~θ(~x)) =
(
y − poly(~θ, ~x)

)2
.

3. Optimization: L̂ takes the form:

L̂(~θ) =
m∑
i=1

(
yi − poly(~θ, ~xi)

)2
,

which is a function of p + 1 coe�cients θ0, · · · , θp. Minimizing in ~θ the optimal value for

these coe�cients can again be expressed in closed form.

3

DM534 � Autumn 2021 Lecture Notes

2 Arti�cial Neural Networks

2.1 Arti�cial neuron models: perceptron and sigmoid neurons

2.1.1 Perceptrons

A perceptron is a type of arti�cial neuron. It takes several binary inputs, x1, x2, . . . , xp and

produces a single binary output.

Input #1

Input #2

Input #3

Input #4

Output

Figure 1: A Perceptron.

In the example shown in Figure 1 the perceptron has four inputs, x1, x2, x3, x4. In general it

could have more or fewer inputs. In the 1950s and 1960s Warren McCulloch and Walter Pitts

and later Frank Rosenblatt proposed a simple rule to compute the output. They introduced

weights, w1, w2, . . . , wp, real numbers expressing the importance of the respective inputs to the

output. The neuron's output, 0 or 1, is determined by whether the weighted sum of the inputs,∑p
j=1wjxj , is less than or greater than some threshold value. Just like the weights, the threshold

is a real number which is a parameter of the neuron. To put it in more precise algebraic terms:

output :=

{
0 if

∑p
j=1wjxj ≤ w0

1 if
∑p

j=1wjxj > w0

(4)

We can simplify the way we describe perceptrons. The condition
∑p

j=1wjxj > w0 is cum-

bersome, and we can make two notational changes to simplify it. The �rst change is to write∑p
j=1wjxj as a dot product, ~w · ~x =

∑p
j=1wjxj , where ~w and ~x are vectors whose components

are the weights and inputs, respectively. The second change is to denote the threshold as w0, to

bring it to the left side of the inequality, to de�ne x0 = −1 and to rede�ne the vectors ~w and ~x
such that they include also w0 and x0, respectively. Thus, we can �nally write:

output :=

{
0 if ~w · ~x ≤ 0

1 if ~w · ~x > 0
(5)

The threshold w0 has the same role as the intercept in the linear regression (see also Sec. 2.1.3).

For consistency with the theory of linear regression we can represent w0 by the bias w′0, and set

w′0 = −w0 and x0 = 1. Introducing the bias is only a small change in how we describe percep-

trons, but it simpli�es more advanced theory on neural networks and it is therefore preferred

to the use of a threshold. Note also that programs to compute the weights of neural networks

return the bias rather than the threshold.2 From the point of view of the application, you can

think of the bias as a measure of how easy it is to get the perceptron to output a 1. Or to put it
in more biological terms, the bias is a measure of how easy it is to get the perceptron to �re. For

a perceptron with a really big bias, it's extremely easy for the perceptron to output a 1. But if
the bias is negative with a large absolute value, then it's di�cult for the perceptron to output a

1.
2However, in our exercises where calculations are to be carried out by hand we will consistently use the

threshold notation.

4

DM534 � Autumn 2021 Lecture Notes

The perceptron recalled above is only one type of arti�cial neuron. In class, we discussed

also the sigmoid (or logistic) neuron. Sigmoid neurons are similar to perceptrons, but modi�ed

so that small changes in their weights and bias cause only a small change in their output. That's

a crucial fact to allow a network of sigmoid neurons to learn.

2.1.2 Sigmoid neurons

Sigmoid neurons can be depicted in the same way as we depicted perceptrons in Figure 1.

Just like a perceptron, the sigmoid neuron has inputs, x1, x2, . . . , xp. But instead of be-

ing just 0 or 1, these inputs can also take on any values between 0 and 1. So, for instance,

0.638, 0.432, . . . , 0.578 is a valid input for a sigmoid neuron. Also just like a perceptron, the

sigmoid neuron has weights for each input, w1, w2, . . . , wp and an overall bias, w′0 for x0 = 1.
But the output is not 0 or 1. Instead, it is σ(~w · ~x), where σ is called the sigmoid or logistic

function, and is de�ned by:

σ(z) :=
1

1 + e−z

To put it all a little more explicitly, the output of a sigmoid neuron with inputs x1, x2, . . . , xp,
weights w1, w2, . . . , wp and threshold w0 is

output :=
1

1 + exp
(
−
∑p

j=1wjxj + w0

)
To understand the similarity to the perceptron model, suppose z := ~w · ~x is a large positive

number. Then e−z ≈ 0 and so σ(z) ≈ 1. In other words, when z := ~w ·~x is large and positive, the

output from the sigmoid neuron is approximately 1, just as it would have been for a perceptron.

Suppose on the other hand that z := ~w · ~x is very negative. Then e−z = ∞, and σ(z) ≈ 0. So
when z := ~w · ~x is very negative, the behavior of a sigmoid neuron also closely approximates a

perceptron. It is only when z := ~w · ~x is of modest size that there's much deviation from the

perceptron model.

How should we interpret the output from a sigmoid neuron? Obviously, one big di�erence

between perceptrons and sigmoid neurons is that sigmoid neurons don't just output 0 or 1. They
can have as output any real number between 0 and 1, so, for example, values such as 0.173 and

0.689 are legitimate outputs. This can be useful, for example, if we want to use the output

value to represent the average intensity of the pixels in an image input to a neural network. But

sometimes it can be a trouble. Suppose we want the output from the network to indicate either

�the input image is a 9� or �the input image is not a 9�. Obviously, it would be easiest to do this

if the output was a 0 or a 1, as in a perceptron. But in practice we can set up a convention to

deal with this, for example, by deciding to interpret any output of at least 0.5 as indicating a

�9�, and any output less than 0.5 as indicating �not a 9�.

What about the algebraic form of σ? How can we understand that? In fact, the exact form

of σ is not so important � what really matters is the shape of the function when plotted. The

shape is shown in Figure 2, left. This shape is a smoothed out version of a step function shown

in Figure 2, right. If σ had in fact been a step function, then the sigmoid neuron would be a

perceptron, since the output would be 1 or 0 depending on whether ~w ·~x was positive or negative.
By using the actual σ function we get a smoothed out perceptron. Indeed, it is the smoothness

of the σ function that is the crucial fact, not its detailed form.

5

DM534 � Autumn 2021 Lecture Notes

Figure 2: The graph of a sigmoid function, left, and of a step function, right.

2.1.3 Linear separators

In a binary classi�cation task, the single neuron implements a linear separator in the space of

the input variables. Indeed, for a perceptron the decision boundary is

p∑
j=1

wjxj = w0

That is, if the left hand side of the equation above is less or equal than the threshold then the

neuron outputs 0, otherwise it outputs 1.

In the case of two inputs, x1 and x2, this becomes:

w1x2 + w2x2 = w0,

which corresponds to the equation of a line in the Cartesian plane:

x2 = −
w1

w2
x1 +

1

w2
w0

(you might have seen this with y in place of x2 and x in place of x1.) In 3 dimensions the

equation:

w1x2 + w2x2 + w3x3 = constant

represents a plane. In more dimensions the equation represents what is called an hyperplane. In

all cases, the equation remains linear in ~x and therefore it is called linear separator.

A sigmoid neuron uses most commonly the value 0.5 as the discriminant for outputting 1 or

0. Then the decision boundary becomes:

1

1 + exp
(
−
∑p

j=1wjxj − w′0
) = 0.5

Solving in ~x we obtain an equation of the form:

p∑
j=1

wjxj = constant+ w′0 = constant

which is again linear in ~x. Therefore, also the single sigmoid neuron is a linear separator.

6

DM534 � Autumn 2021 Lecture Notes

Output

Hidden

layer

Input

layer

Output

layer

Figure 3: The structure of neural networks.

2.2 Multilayer neural networks

Figure 3 shows a general structure of a feed-forward neural network. Somewhat confusingly, and

for historical reasons, such multiple layer networks are sometimes called multilayer perceptrons

or MLPs, despite being made up of sigmoid neurons, not perceptrons. The latter use a step

function as activation function while the former use a sigmoid (also called logistic) function.

The leftmost layer in this network is called the input layer and the neurons within the layer

are called input neurons. The notation for input neurons, in which we have an output, but no

inputs, is a shorthand. It doesn't actually mean a perceptron with no inputs. It's better to think

of input neurons as not really being neurons at all, but rather special units which are simply

de�ned to output the desired values, which are the inputs to the network. The rightmost or

output layer contains the output neurons, or, as in this case, a single output neuron. The middle

layer is called a hidden layer, since the neurons in this layer are neither inputs nor outputs. The

term �hidden� perhaps sounds a little mysterious but it really means nothing more than �not an

input or an output�. The network in the �gure has just a single hidden layer, but some networks

can have multiple hidden layers.

Most commonly, in computer programs that implement neural networks, all nodes of the

hidden layers are sigmoid neurons whose outputs are left unchanged from the sigmoid function

and lay in the interval [0, 1]. The output neurons are, instead, de�ned depending on the task.

In a binary classi�cation task, a single sigmoid neuron can provide a probability measure for the

prediction to be one or the other class. In multi-way classi�cation, the output of a single sigmoid

neuron can be assessed by a partition of the interval [0, 1]. Alternatively, there can be as many

sigmoid neurons as there are classes and the prediction decided by the neuron that returns the

largest value. In a regression task, a single output neuron can implement an identity function or,

equivalently, a linear function. In general, these decisions that determine the actual structure or

architecture of the neural network are passed as parameters to the programs.

References

The part on the neural networks is largely based on: Michael A. Nielsen, �Neural Networks and

Deep Learning�, Determination Press, 2015. http://neuralnetworksanddeeplearning.com/

chap1.html

7

