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Shading

Shading = find color values at pixels of screen (when rendering a virtual
3D scene).

Same as finding color value for the closest triangle on the ray of the pixel
(assuming this is an opaque object, and air is clear).

Core objective: Find color values for intersection of a ray with a triangle.
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Shading

Core objective: Find color values for point at intersection of a ray with a
triangle.

Recall:

I Rendering is triangle-driven (foreach triangle: render).

I Triangles are simply (triples of) vertices until rasterization phase,
where pixels of the triangle are found from pixels of the vertices.

So the rays relevant for a given triangle are determined in the
rasterization phase.
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Modeling Light

Core objective: Find color values for intersection of a ray with a triangle.

Model physical light (photons)

In real life, photons are

I Emitted from ligth sources.

I Reflected, absorbed, re-emitted, transmitted when hitting objects.
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Modeling Light
Highly complex physical proces, mainly at surfaces of materials. Zillions
of photons involved.

Can only be modeled to a certain degree mathematically (ongoing
research expands on the available models).

(Figure by Jason Jacobs)
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Modeling Light

Realtime rendering additionally has severe time constraints.

Framerate ∼ 30/sec, screen size ∼ 106 pixels ⇒ few GPU cycles
available for calculation per ray.

For a 0.3 Teraflop CPU, this gives a maximum of 104 flops for all
handling of all triangles pertaining to a given pixel/ray.

Hence, realtime rendering uses rough models.

Today: the classic model (Phong’s lighting model, 1975) built into classic
OpenGL under the name the fixed-functionality pipeline. The model is
very heuristic (has skimpy physical backing). But gives an introduction
to many main ingredients of lighting models.

More advanced models: use programmable GPU (shaders = programs for
light calculations (and other vertex manipulation), see Chapters 20–21).

Actually, on modern programmable GPUs, the fixed-functionality pipeline
of classic mode OpenGL is just a default shader program. (Used to be
hardwired into GPUs).
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Color

Photons/light waves have frequencies:



Color
The lights following a ray has in real life a spectrum:

The eye sees colors by ligth-sensitive cells called cones. Three types of
cone cells, with different sensitivity to various wavelengths. Peaks of
sensitiviy in red, green, blue parts of spectrum, respectively.

So input spectrum in ray ⇒ three-tuple output from each cone-triple to
brain. Different spectra can give same output to brain.

On computer displays: use mix of (monocromatic) red, green, blue to
stimulate cones and control the eye/brain’s color perception.

Hence, displays (and hence OpenGL) work with (R,G,B)-tuples as color
values. [Or four-tuples, if alpha/transparency information is included.]
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Lightning Models

I Define virtual lights.

I Define light/surface interactions.



Virtual Lights in OpenGL

I Directional: light direction same for all points in scene (light emits
infinitely far from scene—think sun).

I Positional: light emits from a 3D point in the scene. Light direction
varies for different points in the scene.

I Spot: like positional, but with cone restricting light emission.
Attenuation factor towards side of cone: (cosα)h

Attenuation factor for positional/spot lights (d = distance from surface
point to light position):

1

a + b · d + c · d2
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Phongs Lightning Model

I Models only opaque objects.

I Models generally only one level of light/surface interactions (except
ambient term, see below).

I Light/surface interaction is modeled by two simple submodels,
diffuse and specular term.

I Models indirect light effects very crudely (ambient term).

I Light actually generated at surface can be added (emissive term).

I Occlusion is not modeled (all objects see all lights).
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Generic Material and Light Interaction

Surfaces (materials) and light has color.

Light: intensity value in [0, 1] for each of the three RGB-channels. One
triple for each light.

Material: scaling factor in [0, 1] for each of the three RGB-channels. One
triple for each vertex in each primitive.

Basic interaction:

(light intensity value) × (material attenuation factor).

(Note: multiplication performed separately on each of the three
RGB-channels).

(Note: actually one light intensity triple (for lights) and one material
attenuation factor (for vertices) for each of the terms ambient, diffuse,
and specular (see later). But this flexibility often not used/needed.)
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Diffuse Term in Phong

L’Amberts law [1760] for perfectly scattered light (100% matte surfaces).

I Light influx per area on surface depends on angle θ between light
vector (light direction) and surface normal at point.
Dependency/attenuation is factor of cos θ.

I Light is scattered equally from point in all directions (⇒ eye ray
vector does not matter).
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Specular Term in Phong
Models highlights/shininess using heuristic formula.

Depends on light vector (light direction), eye ray vector, and surface
normal at point.

Let φ be angle between halfway vector s = (l + e) and the normal
vector n.

Attenuation factor: (cosφ)f
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Ambient Term(s) in Phong

Models indirect light (crudely).

“Everywhere is some light”.

Light calculation does not depend points normal vector, direction of eye
ray, direction of light (except for spot attenuation).

More precisely: there is one global ambient term, plus one ambient term
for each light. The latter allows for individually colored light, and
distance and spot attenuation. Besides distance and spot attenuation,
the calculation is just the basic multiplication of material and light.
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Emissive Term in Phong

This is another material value signifying if light is actually created at the
point.

This is just an RGB-triple added to the result of the rest of the
calculations for the point.

Note: the “emitted light” is only used for the color value of the pixel (of
the ray hitting the point). It is not taken into consideration when
calculating color values at other points.

Thus, having a bulb both visible and giving light in a scene will involve:

I Creating polygons for the bulb and setting their emissive properties
to non-zero (probably close to (1,1,1)).

I Creating a virtual light at the center of the bulb.
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Lighting Equation

Add basic interactions between material and light as follows:

I One term for object light emission (usually zero).

I One term for global ambient light.

I For each light defined: add terms for per-light ambient term, diffuse
term, and specular term (with distance and spot attenuation where
appropriate).

This is done once for each RGB-channel. A resulting value above 1.0 is
just truncated to 1.0.



Lighting Equation in Math

channel value = emissive term

+ amb material × amb global

+
∑

all lights dist attenuation × spot attenuation ×
(amb material × amb light +

max{~l · ~n, 0} × diff material × diff light +

(max{~s · ~n, 0})f × spec material × spec light)



Shading models
So we now have information in each vertex. How spread color calculation
over entire triangle pixels?

I Flat shading: Color calculated for one point is used for entire
triangle.

I Smooth shading (aka. Gouraud shading): Colors cal-
culated for three vertices are interpolated across the
entire triangle (individually for each RGB-channel).

I Phong shading: Color calculation done for all points of pixels.

Calculation time increases down the list. Phong shading needs
programmable shaders (not part of OpenGL fixed-functionality pipeline).
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