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Perspective Projection I

In this note, names denoting vector values are shown in bold (instead of
using arrows above the name).

Recall that by perspective projection, we mean moving a point p = (x, y, z) ∈
R3 to the point of intersection between the viewing plane and the line going
through the camera position and p. In 3D graphics, one usually takes origo
to be the camera position and the viewing plane to be a plane perpendicu-
lar to the z-axis. Such a plane is given by the equation z = n, where n is
some non-zero value chosen by the user. In OpenGL, n is usually negative.
In other words, the camera is positioned in origo and is looking down the
negative z-axis. Note that such an intersection is defined if and only if p
does not lie in the xy-plane. We in the following assume that p = (x, y, z)
fulfills z < 0, unless otherwise noted.

The following figure shows the situation from the side (y-axis is up).

Using the fact that triangles with same angles are scalings of each other, it
follows from the figure that n = cz and y′ = cy for some scaling factor c.



From this, we get n/z = c and then y′ = yn/z. Thus, the projected y-value
is y′ = yn/z. A similar figure can be drawn with the y-axis exchanged by the
x-axis (which means looking from below), from which the same argument
shows that the projected x-value is x′ = xn/z. In short, the perspective
projection is given by the following mapping f :

f(x, y, z) =

(
xn/z
yn/z

)
We now prove the following fact. It is interesting by itself, and e.g. im-
plies that triangles are projected to triangles,1 such that we can just project
the three vertices of a triangle, and then find the full projected triangle by
drawing lines between the three projected points and filling out the area
(rasterization). We furthermore will have good use of the function λ con-
structed during the proof.

Theorem 1 For the mapping f , line segments not crossing the xy-plane
are mapped to line segments.

Proof: Let l be a given line segment from p0 = (x0, y0, z0) to p1 =
(x1, y1, z1), where z0 and z1 are non-zero and have the same sign. The
points on l can be expessed as

l(s) = p0 + s(p1 − p0) =

 x0 + s(x1 − x0)
y0 + s(y1 − y0)
z0 + s(z1 − z0)


for s ∈ [0, 1]. Let us define

λ(s) =
z1s

z0 + (z1 − z0)s
.

1The three line segments constituting the sides of the triangle are projected to three
line segments. The interior of the triangle can be seen as the union of all line segments
between a corner point and points on its opposing edge. These line segments are mapped
to line segments constituting the interior of the mapped triangle.

2



Looking at f(l(s)) we can calculate

f(l(s)) =


(x0 + s(x1 − x0))n
z0 + s(z1 − z0)

(y0 + s(y1 − y0))n
z0 + s(z1 − z0)



=


x0n

z0
+ λ(s)(

x1n

z1
− x0n

z0
)

y0n

z0
+ λ(s)(

y1n

z1
− y0n

z0
)


= f(p0) + λ(s)(f(p1)− f(p0)),

where the calculations behind the second equality are relegated to Lemma 3
below.

By Lemma 2 below, for s ∈ [0, 1] the points in

f(p0) + λ(s)(f(p1)− f(p0))

will be the same as the points

f(p0) + t(f(p1)− f(p0))

for t ∈ [0, 1], that is, exactly the points of the line segment from f(p0) to
f(p1). �

In short, the proof above shows that when traversing the line

l(s) = p0 + s(p1 − p0), s ∈ [0, 1],

between the endpoints p0 and p1, the mapping f(l(s)) of the traversed point
l(s) will itself traverse the line

f(p0) + t(f(p1)− f(p0)), t ∈ [0, 1]

between the mapped endpoints f(p0) and f(p1).

However, the lines are not traversed at the same speed in the two expressions
above. This is to be expected, as the following figure shows.
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A very useful aspect of the proof is that we actually know the correlation
between the two speeds. That is, we know the relationship between the po-
sitions (values of the traversal parameters s and t) for corresponding points
l(s) and f(l(s)) on the two traversals—it is given by t = λ(s).

The inverse of λ can be found by solving t = z1s/(z0 + (z1− z0)s) for s. An
easy calculation shows this to be

s =
z0t

z1 − (z1 − z0)t
,

which we may call s = λ−1(t). This is useful when doing texture lookup
along a line (during shading) based on only knowing the texture coordinates
for the endpoints of the line. The interesting points along the line are gener-
ated by the pixels which the line covers, i.e., these points are equidistant on
the screen (after projection), and have evenly spaced values of t. However,
the texture is assumed to be “glued” over the line in world space (before
projection), so the texture should be sampled by using the corresponding
values of s (which are not equidistant, but can be found via λ−1).

For interpolation across a triangle (rather than a line), a similar correspon-
dence based on barycentric coordinates can be developed (see handout by
Eberly, page 83 (not curriculum)). Using these methods during texture
lookup is called interpolation.
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Below, we show the function λ(s) for three pairs of values of z0 and z1. The
gray box illustrates Lemma 2. Asymptotes are also shown. E.g., for s→∞
we have λ(s) → z1/(z1 − z0), which for the green example is 8/5. That
t = λ(s) should be bounded for s → ∞ is clearly to be expected from the
figure above.
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Lemma 2 If z0 and z1 are non-zero and have the same sign, λ is a bijective
(i.e., 1-1 and onto) mapping from [0, 1] to [0, 1].

Proof: We note that λ(0) = 0 and λ(1) = 1. Hence, if we can prove λ
continous and strictly increasing on [0, 1], we are done.

Addition and multiplication are continous functions. Division is a continous
function on intervals where the divisor is not zero. Hence λ is continous if
the denominator is not zero. Since z0+(z1−z0)s = 0⇔ s = −z0/(z1−z0) =
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z0/(z0 − z1), we can see that the denominator in λ(s) is not zero for any
s ∈ [0, 1] by a case analysis: i) for z1 > z0 > 0 or 0 > z0 ≥ z1 a denominator
of zero means s < 0, ii) for z0 > z1 > 0 or 0 > z1 ≥ z0 a denominator of
zero means s > 1, iii) for z0 = z1 we simply have λ(s) = s. In all cases, λ(s)
is continous on [0, 1].

To show that λ is increasing, we use the quotient rule for differentiation
and get λ′(s) = (z1(z0 + (z1 − z0)s) − z1s(z1 − z0))/(z0 + (z1 − z0)s)

2 =
z1z0/(z0 +(z1−z0))2, hence λ′(s) > 0 when z0 and z1 are non-zero and have
the same sign. �

Lemma 3 We have

(x0 + s(x1 − x0))n
z0 + s(z1 − z0)

=
x0n

z0
+ λ(s)(

x1n

z1
− x0n

z0
),

and similar with y in x’s place.

Proof: For x we have

(x0 + s(x1 − x0))n
z0 + s(z1 − z0)

=
(x0(1− s) + sx1)n

z0 + s(z1 − z0)

=
x0n
z0

(z0 − sz0) + sx1n

z0 + s(z1 − z0)

=
x0n
z0

(z0 + s(z1 − z0) + sz1) + sx1n

z0 + s(z1 − z0)

=
x0n

z0
+
sx1n− sz1 x0n

z0

z0 + s(z1 − z0)

=
x0n

z0
+

sz1
z0 + s(z1 − z0)

(
x1n

z1
− x0n

z0
)

=
x0n

z0
+ λ(s)(

x1n

z1
− x0n

z0
).

The calculations for y are exactly the same.

�
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