Transformations

Recall the Graphics Pipeline:

» Compose the scene from the provided models. This requires scaling,
rotation, and translation of the models.

» Define a camera position.

» Project the points of the models of the scene onto a 2D plane (given
by the camera position). The plane is identified with the screen.

» For each triangle perform rasterization: find the pixels it covers in
the screen. Interpolate any extra data (color, etc.) in the three
vertices to find data values for the pixels.

» For each of these pixels: calculate a color (shading).

> Apply the color to the pixel on screen in a suitable way (e.g. if other
triangles are closer, discard the color (using a z-buffer)).

Until rasterization, our data are essentially points.‘

We will see the details of all the terms in italics (and many more) later.

Recall the Graphics Pipeline:

» Compose the scene from the provided models. This requires scaling,
rotation, and translation of the models. +~ TODAY

» Define a camera position.

» Project the points of the models of the scene onto a 2D plane (given
by the camera position). The plane is identified with the screen.

» For each triangle perform rasterization: find the pixels it covers in
the screen. Interpolate any extra data (color, etc.) in the three
vertices to find data values for the pixels.

» For each of these pixels: calculate a color (shading).

> Apply the color to the pixel on screen in a suitable way (e.g. if other
triangles are closer, discard the color (using a z-buffer)).

Until rasterization, our data are essentially points.‘

We will see the details of all the terms in italics (and many more) later.

Composing the Scene

A model (box, car, building, character,...) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

A \3'2) =(rtd yidy, 2+d)

displacement
vector (dy, d, d.)

E.g. translation:

=\

MV&

o

Composing the Scene

A model (box, car, building, character,...) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

YA L3, 2) =(x+d,, ymr)_, z+d)

displacement
vector (dy, d, d.)

E.g. translation:

|

MV&

o

Move model < move triangles < move points (vertices) < f : R® — R3

Composing the Scene

A model (box, car, building, character,...) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

YA W2 2) =lrtd yid,, 7))

displacement
vector (dy, d, d.)

E.g. translation:

MV&

o

Move model < move triangles < move points (vertices) < f : R® — R3

2xz
f : R® — R3 are functions such as f(x,y,z) = | x+y
z+1

Composing the Scene

A model (box, car, building, character,...) is defined in one position
(often centered around origo), size and orientation.

Will be needed in another position in the scene, possibly in another size
and orientation. Translation, scaling, rotation (= model transformations).

displacement
vector (dy, dy, d.)

E.g. translation:

Move model < move triangles < move points (vertices) < f : R® — R3

2xz
f : R® — R3 are functions such as f(x,y,z) = | x+y
z+1

Task: find the functions that we need for model transformations.

Translation

YA

L8

R S

N)

Translation

VA X1,), 2) =(td,, yrd,, =+d,)

displacement
vector (dy, d,. d.)

X+ d,
fx,y,z2)=|y+d,
z+d,

Note: (d.,d,,d,) is a fixed translation vector, the point (x,y,z) is a
vertex of the model and is the input to f.

Scaling

z

YA

P'{5ex. 5y). 5-2)

Scaling

S

z

Psyx, 5,y 5-2)

5.+ X
f(Xay7Z): Sy y
5,2
Uniform scaling: s, =5, = s.

Rotation

Euler [1775]: for every orientation of a model
there is a line / through (0,0,0) and an an-
gle o, such that rotating ¢ around / gives
this orientation.

Rotation

Euler [1775]: for every orientation of a model
there is a line / through (0,0,0) and an an-
gle o, such that rotating ¢ around / gives
this orientation.

Rotation around line through origin:

Rotation

Euler [1775]: for every orientation of a model
there is a line / through (0,0,0) and an an-
gle o, such that rotating ¢ around / gives
this orientation.

Rotation around line through origin:

f(x,y,z) =

Rotation

Simpler case: Rotation around z-axis.

(0,0.1)

T

YA

PE,y,)

L P2

=
S

5 4

Rotation

Simpler case: Rotation around z-axis.

A Py,)
Y PP
1 k
R R
a x
(0,0, 1),
s
f(x,y,z) =

Rotation

Simpler case: Rotation around z-axis.

va

Use formula for rotating ¢ round origin in 2D:

f(x,y,z) =

Rotation

Simpler case: Rotation around z-axis.

YA P,y 20)

L’ L P(x, v, 2)
LA

| k

R R

[9) 'x

(0,0, 1)
>

Use formula for rotating ¢ round origin in 2D:

X-COSO —y-sing
f(x,y,z)= | x-sino+y-coso
z

Rotation

Similar: Rotation around x-axis and y-axis.

X

f(x,y,z)=|y-cosp—z-sing
y-sino+z-coso

Z-sino+ x-coso

f(x,y,z) = y
Z-COSh—X-sino

Euler Angles

Theorem [Euler, 1775]: any orientation can be created as three succesive
rotations around the three coordinate axes.

The angles of the coordinate axis rotations are called Euler angles.

Using Euler angles to specify generic rotations is often intuitive, but also
has drawbacks. We will return to that later.

Proof of Formula for Rotation in 2D

Proof of Formula for Rotation in 2D

Proof of Formula for Rotation in 2D

1

(xy) =x-(1,0)+y-(0,1)

=x-Vi+y- ¥

Proof of Formula for Rotation in 2D

Proof of Formula for Rotation in 2D

Proof of Formula for Rotation in 2D

Proof of Formula for Rotation in 2D

1 = (cos(¢), sin(¢))

vy = (—sin(¢), cos(¢))

Proof of Formula for Rotation in 2D

(x,y

Proof of Formula for Rotation in 2D

(Xoy') = x Vit y vz
= x - (cos(),sin(®)) +y - (=sin(¢), cos(o))
= (x-cos(¢) —y -sin(d), x-sin(¢)+ y - cos(o))

Interlude

243+4=71

Interlude

24+3+4=09

Interlude

243+4=09

2+ (3+4)or (2+3)+47

Interlude

24+3+4=9

2+ (3+4)or(2+3)+47
Doesn't matter, addition is associative:

at+(b+c)=(a+b)+c

Interlude

2.3.4=7

Interlude

2.

3.

4=24

Interlude

2.3.4=24

2-(3-4)or(2-3)-47

Interlude

2.3.4=24

2-(3-4)or(2-3)-47
Doesn't matter, multiplication is associative:

a-(b-c)y=(a-b)-c

Interlude

2-3-4=?

Interlude

2-3-4="

2-(3—4)or(2—3)—47

Interlude

2-3-4=?

2—(3—4)or(2-3)—47
Does matter, subtraction is not associative:
2—-(3-4)=3

(2-3)—4=-5

Recap of Matrices

Matrix = 2D table of numbers:

O N =

Above is a 3 X 4 matrix.

= o1 W

= o

o~

Recap of Matrices

Matrix = 2D table of numbers:

1 3 41
2 5 6 7
9 1 1 0
Above is a 3 X 4 matrix.
Other examples:
1 3 4
2 5 5 7 2 6 5
9 1 8

Recap of Matrices

Matrix addition:

1 6 4 3 21 1+3 6+2 4+1 4 8
2 5 7/ +|4 3 2|=|24+4 5+3 7+2|=|6 38
9 1 1 5 4 3 9+5 1+4 1+3 14 5

S~ O O

Recap of Matrices

Matrix multiplication:

O N =

= 1 O

= A

[l — N ON]

BN

w N

Recap of Matrices

Matrix multiplication:

33=2-1+5-247-3

Recap of Matrices

Matrix multiplication:

33=2-1+5-247-3

N <

o < W0

< s

O 1

— AN O

Recap of Matrices

Matrix multiplication:

33=2-1+5-247-3

25=90-24+1-34+1-4

Recap of Matrices

Matrix multiplication:

16 4] [3 21 ?7 707
2 5 7|43 2/ =|? 77
9 1 1] |5 4 3 ?7 707
1 6 4] [3 2 7707
_-43I—??33
9 1 1] |5 4 ? 707

25=90-24+1-34+1-4

Matrix multiplication is associative: A-(B-C)=(A-B)-

Transformations via Matrices?

Move model < move triangles < move points (vertices) < f : R3 — R3

Transformations via Matrices?

Move model < move triangles < move points (vertices) < f : R3 — R3
Any fixed matrix can induce a (linear) funktion f : R® — R3:

1 2 3 X Ix+2y 4+ 3z
=14 5 6|-|y]=1|4x+5y+6z

7 8 9 z 7x+8y +9z

f(x,y,z):A-

N < X

Transformations via Matrices?

Move model < move triangles < move points (vertices) < f : R3 — R3

Any fixed matrix can induce a (linear) funktion f : R® — R3:

X 1 2 3 X Ix+2y 4+ 3z

f(x,y,z):A- v|=14 5 6|-|y] =1|4x+5y+62z

z 7 8 9 z 7x+8y +9z

Matrix multiplication is associative: A-(B-C) = (A-B)- C, hence:
X X X
A-(B-(C-(E-(F- |y) ={((A-B)-C)-E)-F)- |y | =G- |y
z z z

Transformations via Matrices?

Move model < move triangles < move points (vertices) < f : R3 — R3
Any fixed matrix can induce a (linear) funktion f : R® — R3:
Ix+2y 4+ 3z

1 2 3 X
=14 5 6|-|y]=1|4x+5y+6z
7 8 9 z 7x+8y +9z

f(x,y,z):A-

N < X

Matrix multiplication is associative: A-(B-C) = (A-B)- C, hence:

A-(B-(C-(E-(F- |y) ={((A-B)-C)-E)-F)- |y | =G- |y

Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of 5-15 transformations. Calculate
the matrix product G = ((((A-B) - C)- E) - F) once.

Transformations via Matrices?

Move model < move triangles < move points (vertices) < f : R3 — R3
Any fixed matrix can induce a (linear) funktion f : R® — R3:
Ix+2y 4+ 3z

1 2 3 X
=14 5 6|-|y]=1|4x+5y+6z
7 8 9 z 7x+8y +9z

f(x,y,z):A-

N < X

Matrix multiplication is associative: A-(B-C) = (A-B)- C, hence:

A-(B-(C-(E-(F- |y) ={((A-B)-C)-E)-F)- |y | =G- |y

Saves calculations: 3D object = many triangles = many points. All
points go through the same sequence of 5-15 transformations. Calculate
the matrix product G = ((((A-B) - C)- E) - F) once.

Question: can all our needed functions be expressed as matrices?

Transformations as Matrices

Transformations as Matrices

» Scaling

5. X

f(X7.y7Z) = 5}/.}/
5,z

Transformations as Matrices

» Scaling

5. X

f(X7.y7Z) = Svy
5,z

Transformations as Matrices

» Scaling
5. X Sy
f (X,y,z) =|sy] =10
5,2 0

» Rotation angle ¢ around the z-axis

XCOS ¢ — ysin ¢
f(x,y,z): xsino + ycoso | =
z

Transformations as Matrices

» Scaling
5. X s. 0 0 X
f(x,y,z)=[sy]| =10 s 0| |y
52z 0 0 Sz z

» Rotation angle ¢ around the z-axis

XCOS ¢ — ysin ¢ cos¢p —sing 0
f(ny,Z) = | xsindo+ycosp | = |sind cos¢p 0O
z 0 0 1

Transformations as Matrices

» Scaling
X 0 O X
f (Xa Y, Z) = y = 0 0 ’ y
z 0 O z
» Rotation angle ¢ around the z-axis
X -y - 0 X
f(x,y,z): X +y = ol - |y
z 0 0 1 z
» Translation?
X+ 7?77 X
f (X,y,z) =|y+ =7 7 7|y
z+ 777 z

Transformations as Matrices

» Scaling
X 0 O X
f (Xa Y, Z) = y = 0 0 ’ y
z 0 O z
» Rotation angle ¢ around the z-axis
X -y - 0 X
f(x,y,z): X +y = ol - |y
z 0 0 1 z
» Translation?
X+ 7?77 X
f (x,y,z) =|y+ =7 7 7|y
z+ 777 z

No. For (non-trivial) translation we have £(0,0,0) # (0,0,0), but
all functions induced by matrices have 7(0,0,0) = (0,0,0).

Homogeneous Coordinates

Go to 4D:

=N < X

Homogeneous Coordinates

Go to 4D:

And back:

S NS X

=N < X

Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:

1 00 X X+
010 vyl _|y+
0 01 z| | z+
0 00 1 1 1

Homogeneous Coordinates

Translations (in 3D) can now be expressed as matrix multiplication:

1 00 X X+
010 vyl _|y+
0 01 z| | z+
0 00 1 1 1

All 3x3 matrices are still available (incl. scaling and rotation):

12 30 X Ix+2y + 3z
4 5 6 0 y| [|4x+5y+6z
7 8 9 0 z 7x+ 8y + 9z
0 0 01 1 1

Projection
Projection to screen: f : R3 — R2.

Projection

Projection to screen: f : R3 — R2. Prespective projection

((far/near) lef,

base on the plane

(far/near) top, -far)

-
((far/near) right,

(fur/near) top, -far)
Viewing frustum

((far/near) lefi,
(far/near) bottom. -ff

((far/near) right,

(far/near) bottom, ~far)
7 -near)
viewing face (film) on the
viewing plane = = -near
Uef, bottom, -n97 . right, bottom, -near)
£(0,0.0)= apex
OpenGL Window
Computer Screen

Projection

Projection to screen: f : R3 — R2. Prespective projection:

base on the plane = = far
((far/near) lefi, ((far/near) right,
(far/near) top, -far)

(far/near) top, <far)

Viewing frustu

((far/near) lefi,

((far/near) right,
(far/near) bottom. -

) (far/near) bottom. -far)
(Uefi, 10p, -near)[—+ “—(right, top, -near)
/ viewing face (film) on the
__~ viewing plane z = -near
Uefi, boirom, -neap)!

(0,0,0)= aper ET

OpenGL Window

Computer Screen

Expressed as 4x4 matrix multiplication (d = —near):

xd/z
= — | yd/z

O O O+
O O = O
~HEH OO
o O O o
= N < X
|
<

Projection

Projection to screen: f : R3 — R2. Prespective projection:

base on the plane = = far
((far/near) lefi, ((far/near) right,
(far/near) top, far) |

(far/near) top, <far)

Viewing frustu

((far/near) lefi,

((far/near) right,
(far/near) bottom. -

.. (far/near) bottom, -far)
(Uefi, top, -near) “—A(right, top. -near)

/ viewing face (film) on the
__~ viewing plane z = -near
(left, bottom, -near)}

(0,0,0) m
,0,0) = apex hJ

OpenGL Window

Computer Screen

Expressed as 4x4 matrix multiplication (d = —near):

xd/z
=)z/ — | yd/z

z/d d

O O O+
O O = O
~HEH OO
o O O o
= N < X

So also proj. can be expressed via matrices (and homogeneous coord.).

Transformations in Practice
Usually, a library (such as Graphics1ib3D from the textbook), offering
easy and intuitive generation of the relevant matrices, is used.

When multiplying matrices, that last mentioned is usually the rightmost,
meaning the one first affecting the vertices. Cf. the math notation
f(g(h(x))) (where h is applied first to x, then g, then f).

Examples from Graphicslib3D:

M1.concatenate (M2)
M1.rotateZ(45.0)

This means M; - M, and My - R, where R is the matrix rotating 45
degrees around the z-axis. Recall that on a vertex X, we have

(My- M) - %= My - (M, - X)

So rightmost matrix in the product is applied first.

Often using a stack of matrices works well with hierarchical scenes (scene
where position of objects defined relative to each other in a hierarchical
fashion).

A Standard Consideration

Note that rotations are always around origo. To get the effect of a), a
single rotation will not work, but will give the effect of b). Instead, do as
in c) (translate to origo, rotate, translate back).

Y VAR
- 45° & 50
7.5,0.0)
| . .
| » | "
(a) (b)
YA
(iii) Trapslate

ii}-Rotate about origin

x
fl)‘ ;Translare to orlgE
T©@

Similar considerations relate to scaling.

