DM573 Introduction to Computer Science Lecture on Satisfiability Peter Schneider-Kamp petersk@imada.sdu.dk http://imada.sdu.dk/~petersk/ # DM573 Introduction to Computer Science Lecture on Satisfiability ## **Satisfiability** $$X + 3 = Y$$ Is this equation valid for any values of X and Y? Eq. is satisfiable ## **Satisfiability** Satisfiable? "Solution": X can take boolean assignments. Satisfiability is a semantic property + can be the conjunction A #### THE SAT PROBLEM ## Logic gates | A | Q | |---|---| | 0 | ı | | I | 0 | | A | В | Q | |---|---|---| | 0 | 0 | 0 | | 0 | I | 0 | | ı | 0 | 0 | | I | ı | I | | A | В | Q | |---|---|---| | 0 | 0 | 0 | | 0 | I | I | | ı | 0 | I | | ı | I | I | #### Logic gates # Logic gates 2:4 | A | В | Q | |---|---|---| | 0 | 0 | 0 | | 0 | I | 0 | | I | 0 | 0 | | I | I | I | | | 1: | 2 | | |---|----|---|---------------| | | С | Q | | | / | 0 | I | \rightarrow | | | I | 0 | | 3:8 | A | В | C | Q | |---|---|---|---| | 0 | 0 | 0 | I | | 0 | 0 | I | 0 | | 0 | I | 0 | I | | 0 | I | I | 0 | | I | 0 | 0 | I | | I | 0 | I | 0 | | I | ı | 0 | I | | I | I | I | | etc... #### **New gate: Implication** (Material conditional) | A | В | Q | |---|---|---| | 0 | 0 | ı | | 0 | | I | | I | 0 | 0 | | I | I | I | CLAIM: If it rains, I will bring an umbrella It is a lie, only if it rains, and I bring no umbrella #### Implication is a composite operator #### I tell the truth: - When it is NOT raining - OR when I bring my umbrella #### DM549: Propositional Variables - Variable that can be either false or true - Set P of propositional variables - Example: $$P = \{A,B,C,D,X, Y, Z, X_1, X_2, X_3, ...\}$$ - A variable assignment is an assignment of the values false and true to all variables in P - Example: $$X = true$$ $$Y = false$$ $$Z = true$$ #### **DM549: Propositional Formulas** #### **Propositional formulas** - If X in P, then X is a formula. - If F is a formula, then $\neg F$ is a formula. - If F and G are formulas, then $F \wedge G$ is a formula. - If F and G are formulas, then F ∨ G is a formula. - If F and G are formulas, then $F \rightarrow G$ is a formula. - Example: $(X \rightarrow (Y \land \neg Z))$ - Propositional variables or negated propositional variables are called literals - Example: $X, \neg X$ #### Which formulas are satisfiable? - X - ¬X - X ∧ ¬X - ¬X ∧ ¬X - X ∨ ¬X - $X_1 \rightarrow X_2$ - \blacksquare $\neg X_1 \lor X_2$ - True when X=T - True when X=F - Unsatisfiable - True when X=F - True when X=T or X=F - True when X_1 =T and X_2 =T - True when $X_1=T$ and $X_2=T$ #### **Satisfiability** - Variable assignment V satisfies formulas as follows: - V satisfies X in P iff V assigns X = true - V satisfies ¬F iff V does not satisfy F - V satisfies FAG iff V satisfies both F and G - V satisfies FV G iff V satisfies at least one of F and G - V satisfies $F \rightarrow G$ iff V does not satisfy F or V satisfies G - A propositional formula F is satisfiable iff there is a variable assignment V such that V satisfies F. ## **Satisfiability** The Satisfiability Problem of Propositional Logic (SAT): • Given a formula *F*, decide whether it is satisfiable. ## **Modelling Satisfiability** - propositional variables are basically bits - model your problem by bits - model the relation of the bits by a propositional formula - solve the SAT problem to solve your problem # Your thoughts: What problems can we model? Go to www.menti.com and use the code 8502 6148 ## Problems to model using SAT Modelling # **N-TOWERS & N-QUEENS** #### **N-Towers & N-Queens** - **N-Towers** - How to place N towers on an NxN chessboard such that they do not attack each other? - (Towers attack horizontally and vertically.) - N-Queens (restriction of N-Towers) - How to place N queens on an NxN chessboard such that they do not attack each other? - (Queens attack like towers + diagonally.) ## Modeling by Propositional Variables - Model NxN chessboard by NxN propositional variables X_{i,i} - Semantics: $X_{i,j}$ is true iff there is a figure at row i, column j - Example: 4x4 chessboard | X _{1,1} | X _{1,2} | X _{1,3} | X _{1,4} | |------------------|------------------|------------------|------------------| | X _{2,1} | X _{2,2} | X _{2,3} | X _{2,4} | | X _{3,1} | X _{3,2} | X _{3,3} | X _{3,4} | | X _{4,1} | X _{4,2} | X _{4,3} | X _{4,4} | - Example solution: - $X_{1,2} = X_{2,4} = X_{3,1} = X_{4,3} = true$ - $X_{i,i} = false$ for all other $X_{i,i}$ ## Reducing the Problem to SAT - Encode the properties of N-Towers to propositional formulas - Example: 2-Towers | X _{1,1} | → | ¬X _{1,2} | | |------------------|----------|-------------------|--| | X _{1,1} | → | $\neg X_{2,1}$ | | | X _{1,2} | → | $\neg X_{1,1}$ | | | X _{1,2} | → | $\neg X_{2,2}$ | | | $X_{2,1}$ | → | $\neg X_{2,2}$ | | | X _{2,1} | → | $\neg X_{1,1}$ | | | X _{2,2} | → | ¬X _{1,2} | | | X _{2,2} | → | ¬X _{2,1} | | | X _{1,1} | | | | | X _{2,1} | V X | 2,2 | | | "Tower at (I,I) attacks to the right' | |---------------------------------------| | "Tower at (I,I) attacks downwards" | | "Tower at (1,2) attacks to the left" | | "Tower at (1,2) attacks downwards" | | "Tower at (2,1) attacks to the right' | | "Tower at (2,1) attacks upwards" | | "Tower at (2,2) attacks to the left" | | "Tower at (2,2) attacks upwards" | | "Tower in first row" | | "Tower in second row" | | X _{1,1} | X _{1,2} | |------------------|------------------| | X _{2,1} | X _{2,2} | Form a conjunction of all encoded properties: $$\begin{array}{c} (X_{1,1} \twoheadrightarrow \neg X_{1,2}) \wedge (X_{1,1} \twoheadrightarrow \neg X_{2,1}) \wedge (X_{1,2} \twoheadrightarrow \neg X_{1,1}) \wedge (X_{1,2} \twoheadrightarrow \neg X_{2,2}) \wedge (X_{2,1} \twoheadrightarrow \neg X_{1,1}) \wedge \\ (X_{2,1} \twoheadrightarrow \neg X_{2,2}) \wedge (X_{2,2} \twoheadrightarrow \neg X_{1,2}) \wedge (X_{2,2} \twoheadrightarrow \neg X_{2,1}) \wedge (X_{1,1} \vee X_{1,2}) \wedge (X_{2,1} \vee X_{2,2}) \end{array}$$ #### Solving the Problem Determine satisfiability of $$(X_{1,1} \rightarrow \neg X_{1,2}) \wedge (X_{1,1} \rightarrow \neg X_{2,1}) \wedge (X_{1,2} \rightarrow \neg X_{1,1}) \wedge (X_{1,2} \rightarrow \neg X_{2,2}) \wedge (X_{2,1} \rightarrow \neg X_{1,1}) \wedge (X_{2,1} \rightarrow \neg X_{2,2}) \wedge (X_{2,2} \rightarrow \neg X_{1,2}) \wedge (X_{2,2} \rightarrow \neg X_{2,1}) \wedge (X_{1,1} \vee X_{1,2}) \wedge (X_{2,1} \vee X_{2,2})$$ - Satisfying variable assignment (others are possible): - $X_{1,1} = X_{2,2} = true$ - $X_{1,2} = X_{2,1} = false$ $$(true \rightarrow \neg false) \land (true \rightarrow \neg false) \land (false \rightarrow \neg true) \land (true \rightarrow \neg false) \land (true \lor false) \land (false \lor true)$$ $$(true \rightarrow true) \land (true \rightarrow true) \land (false \rightarrow \neg true) \land (true \rightarrow true) \land (true \lor false) \land (false \lor true)$$ $true \wedge true \wedge$ true ## **SAT Solving is Hard** - Given an assignment, it is easy to test whether it satisfies our formula - BUT: there are many possible assignments! - for m variables, there are 2^m possible assignments \odot - SAT problem is a prototypical hard problem (NP-complete) #### **USING A SAT SOLVER** #### What is a SAT-solver? #### **SAT Solvers** - Plethora of SAT solvers available - For the best, visit http://www.satcompetition.org/ - Different SAT solvers optimized for different problems - One reasonable choice is the SAT solver lingeling - Very good overall performance at SAT Competition 2016 - Parallelized versions available: plingeling, treengeling - Available from: http://fmv.jku.at/lingeling/ # **Conjunctive Normal Form (CNF)** - Nearly all SAT solvers require formulas in CNF - CNF = conjunction of disjunctions of literals CNF transformations generally grow the number of clauses but translates a problem to a common language. #### Conversion to CNF - I. Implications can be replaced by disjunction: - $F \rightarrow G$ converted to $\neg F \lor G$ - 2. DeMorgan's rules specify how to move negation "inwards": - $\neg (F \land G) = \neg F \lor \neg G$ - $\neg (F \lor G) = \neg F \land \neg G$ - 3. Double negations can be eliminated: - $\neg (\neg F) = F$ - 4. Conjunction can be distributed over disjunction: - $F \lor (G \land H) = (F \lor G) \land (F \lor H)$ #### **Example** Example: 2-Towers $$(X_{1,1} \rightarrow \neg X_{1,2}) \wedge (X_{1,1} \rightarrow \neg X_{2,1}) \wedge (X_{1,2} \rightarrow \neg X_{1,1}) \wedge (X_{1,2} \rightarrow \neg X_{2,2}) \wedge (X_{2,1} \rightarrow \neg X_{1,1}) \wedge (X_{2,1} \rightarrow \neg X_{2,2}) \wedge (X_{2,2} \rightarrow \neg X_{1,2}) \wedge (X_{2,2} \rightarrow \neg X_{2,1}) \wedge (X_{1,1} \vee X_{1,2}) \wedge (X_{2,1} \vee X_{2,2})$$ ■ Conversion easy: $A \rightarrow B$ converted to $\neg A \lor B$ - Write formulas in CNF as a list of clauses (= lists of literals) - Example: $$\begin{aligned} & [[\neg X_{1,1}, \ \neg X_{1,2}], [\neg X_{1,1}, \ \neg X_{2,1}], [\neg X_{1,2}, \ \neg X_{1,1}], [\neg X_{1,2}, \ \neg X_{2,2}], [\neg X_{2,1}, \ \neg X_{1,1}], [\neg X_{2,1}, \ \neg X_{2,2}], \\ & [\neg X_{2,2}, \ \neg X_{1,2}], [\neg X_{2,2}, \ \neg X_{2,1}], [X_{1,1}, X_{1,2}], [X_{2,1}, X_{2,2}]] \end{aligned}$$ #### Write in conjunctive normal form $$\neg(A \rightarrow (B \land C))$$ Go to www.menti.com and use the code 8502 6148 Option a $$A \wedge (\neg B \wedge \neg C)$$ $$\frac{\mathsf{Option}\;\mathsf{c}}{\neg\mathsf{A}\;\mathsf{V}\;(\mathsf{B}\;\mathsf{\wedge}\;\mathsf{C})}$$ Option b $$A \wedge (\neg B \vee \neg C)$$ $$\frac{\text{Option d}}{(A \lor B)} \land (A \lor \neg C)$$ #### Variable Enumeration - SAT solvers expect variables to be identified with integers - Starting from 1 and up to the number of variables used - Necessary to map modeling variables to integer! - Example: 4x4 chessboard - $X_{i,i}$ becomes 4*(i-1)+j | X _{1,1} | X _{1,2} | X _{1,3} | X _{1,4} | |------------------|------------------|------------------|------------------| | X _{2,1} | X _{2,2} | X _{2,3} | X _{2,4} | | X _{3,1} | X _{3,2} | X _{3,3} | X _{3,4} | | X _{4,1} | X _{4,2} | X _{4,3} | X _{4,4} | | 1 | 2 | 3 | 4 | |----|----|----|----| | 5 | 6 | 7 | 8 | | 9 | 10 | 11 | 12 | | 13 | 14 | 15 | 16 | #### (Simplified) DIMACS Format - Description of DIMACS format for CNF (BB: dimacs.pdf) - Simplified format (subset) implemented by most SAT solvers: - http://www.satcompetition.org/2016/format-benchmarks2016.html - 2 types of lines for input - Starting with "c ": comment - Starting with "p ": problem - 3 types of lines for output - Starting with "C": comment - Starting with "s ": solution - Starting with "v": variable assignment #### Input Format 1/2 #### Comments - Anything in a line starting with "c" is ignored - Example: ``` c This file contains a SAT encoding of the 4-queens problem! c The board is represented by 4x4 variables: c 1 2 3 4 c 5 6 7 8 c 9 10 11 12 c 13 14 15 16 ``` #### Input Format 2/2 #### **Problem** - Starts with "p cnf #variables #clauses" - Then one clause per line where - Variables are numbered from 1 to #variables - Clauses/lines are terminated by 0 - Positive literals are just numbers - Negative literals are negated numbers #### Example: ``` p cnf 16 80 -1 -2 0 -15 -16 0 1 2 3 4 0 13 14 15 16 0 ``` #### **Output Format 1/2** #### **Comments** - just like for the input format - Example: ``` c reading input file examples/4-queens.cnf ``` #### **Solution** - Starts with "s " - Then either "SATISFIABLE" or "UNSATISFIABLE" - Example: ``` s SATISFIABLE ``` ### Output Format 2/2 #### Variable assignment - Starts with "∨ " - Then list of literals that are assigned to true - "1" means variable 1 is assigned to true - "-2" means variable 2 is assigned to false - Terminated by "0" - Example: 9 10 11 12 13 14 **15** 16 false true false false false false false true true false false false false false true false ### Running the SAT Solver - Save the comment and problem lines into .cnf file. - Invoke the SAT solver on this file. - Parse the standard output for the solution line. - If the solution is "s SATISFIABLE", find variable assignment. Practical Part ### WRITING A SAT SOLVER ### **Brute-Force Solver** - iterate through all possible variable assignments - for each assignment - if the assignment satisfies the formula - output SAT and the assignment - if no assignment is found, output UNSAT ### **Empirical Evaluation** For n variables, there are 2ⁿ possible variable assignments #### **Example:** - $2^{16} = 65,536$ assignments for 4-queens (1 second) - $^{225} = 33,554,432$ assignments for 5-queens (7 minutes) - $^{\circ}$ 2³⁶ = 68,719,476,736 assignments for 6-queens (2 weeks) - $^{\bullet}$ 2⁴⁹ = 562949953421312 assignments for 7-queens (400 years) - 2⁶⁴ assignments for 8-queens (age of the universe) - 2⁸¹ assignments for 9-queens (ahem ... no!) ## Fast Forwarding 60+ Years - Incremental assignments - Backtracking solver - Pruning the search ### **Empirical Evaluation** For n variables, there are 2ⁿ possible variable assignments #### Example: - 2¹⁰⁰ assignments for 10-queens (1.77 seconds) - 2¹²¹ assignments for 11-queens (1.29 seconds) - 2¹⁴⁴ assignments for 12-queens (9.15 seconds) - 2¹⁶⁹ assignments for 13-queens (5.21 seconds) - 2¹⁹⁶ assignments for 14-queens (136.91 seconds) - **...** ## Fast Forwarding 60+ Years - Incremental assignments - Backtracking solver - Pruning the search - Backjumping - Conflict-driven learning - Restarts - Forgetting ### **Empirical Evaluation** For n variables, there are 2ⁿ possible variable assignments #### Example: - 2²⁵⁶ assignments for 16-queens (0.02 seconds) - 2¹⁰²⁴ assignments for 32-queens (0.10 seconds) - 2⁴⁰⁹⁶ assignments for 64-queens (1.08 seconds) - 2¹⁶³⁸⁴ assignments for 128-queens (17.92 seconds) - $extbf{2}$ 265536 assignments for 256-queens (366.05 seconds) ### **Efficient SAT Solving** - in many cases, SAT problems can be solved efficiently - state-of-the-art SAT solvers can be used as black boxes - success of SAT solvers based on - relatively simple but highly-optimized algorithms - innovative and very pragmatic data structures - used extensively for scheduling, hardware and software verification, mathematical proofs, ... ### Take Home Slide - SAT Problem = satisfiability of propositional logic formulas - SAT used to successfully model hard (combinatorial) problems - solving the SAT problem is hard in the general case - advanced SAT solvers work fine (most of the time) # **QUESTIONS?** # Logic puzzles #### WILL YOU CRACK THE CODE? | 6 | 8 | 2 | One number is correct and well placed | |---|---|---|--| | 6 | 1 | 4 | One number is correct but wrong place | | 2 | 0 | 6 | Two numbers are correct but wrong places | | 7 | 3 | 8 | Nothing is correct | | 8 | 7 | 0 | One number is correct but wrong place |