
Ray Tracing and Radiosity



Alternative Rendering Methods

I Standard GPU pipeline (OpenGL): real-time, but shading based on
local effects. No shadows in basic pipeline (must be added by
ad-hoc methods).

I Ray tracing: Global shading model particularly good at specular
effects (shiny surfaces). Too computationally expensive to be
real-time.

I Radiosity: Global shading model particularly good at diffuse effects
(matte surfaces, indirect light). Too computationally expensive to
be real-time. But well suited for storing results as textures (as
diffuse light is not viewpoint dependent).



Ray Tracing

Follow photon paths to the eye.

For efficiency, follow these in a backwards fashion (only spend time on
photons actually hitting the eye).



Ray Tracing

Follow photon paths to the eye.

For efficiency, follow these in a backwards fashion (only spend time on
photons actually hitting the eye).



Ray Tracing Level 0

At end of rays: calculate colors by Phongs lighting model.

Same result as standard GPU pipeline.

Requires mechanism for fast determination of intersection points between
rays and objects of the scene (e.g., store objects in spatial data
structures—more on these in DM815).



Ray Tracing Level 0

At end of rays: calculate colors by Phongs lighting model.

Same result as standard GPU pipeline.

Requires mechanism for fast determination of intersection points between
rays and objects of the scene (e.g., store objects in spatial data
structures—more on these in DM815).



Ray Tracing Level 0

At end of rays: calculate colors by Phongs lighting model.

Same result as standard GPU pipeline.

Requires mechanism for fast determination of intersection points between
rays and objects of the scene (e.g., store objects in spatial data
structures—more on these in DM815).



Ray Tracing Level 1

Add occlusion tests to light sources.

Gives shadows.



Ray Tracing Level 2+

Add reflection and transmission. Then recurse.

Note: simulating indirect light transfer between diffuse surfaces requires
following many (approximating infinitely many) reflective rays from each
ray intersection point in the recursive process.

Prohibitively costly. Similar thing with specular highlights on less glossy
surfaces. So ray tracing works best for glossy materials.



Ray Tracing Level 2+

Add reflection and transmission. Then recurse.

Note: simulating indirect light transfer between diffuse surfaces requires
following many (approximating infinitely many) reflective rays from each
ray intersection point in the recursive process.

Prohibitively costly. Similar thing with specular highlights on less glossy
surfaces. So ray tracing works best for glossy materials.



Radiosity

Model indirect light bouncing between purely diffuse (Lambertian)
surfaces (of which some are light emitting).

(Figure by Jason Jacobs)



Patches

Start by patchifying the surfaces of the scene.

(Figure by Chuck Pheatt)

Entire path will be considered same ligth value (radiosity/brightness) Bi .

Radiosity: photons emitted per time and per area.



Form Factors

Form factor Fij : measure of light transport between patch i and j .



Calculate Form Factors

For Fij : sum (integrate) contribution between (infinitesimal small areas
around) all points on the two patches Pi and Pj .

Practical approximative calculation of form factors can be done via
rendering in OpenGL:



Radiosity Equation
With M a specific n × n matrix (n is number of patches in schene)
having entries depending on form factors and reflectance of patches, B
the sought vector of brightness/radiosity values for patches and E the
vector of emissive values for patches, one can prove:

MB = E

Using properties of the matrix M and results from matrix theory, it can
be proven that the iterative process

Bi+1 = E + (I −M)Bi

for any start vector B0 will converge to B. Usually faster than directly
solving MB = E (by e.g. inverting M), and less memory is used.



Iterative Process

Here is the result of rendering a specific scene with B1, B2, B3, B16.

(Figure by Hugo Elias)

The patching of the room may be refined based on one run of radiosity,
increasing the resolution in areas with large variation in light values
(edges of shadows, e.g.), and lowering the resolution in areas with small
variation.



Iterative Process

Here is the result of rendering a specific scene with B1, B2, B3, B16.

(Figure by Hugo Elias)

The patching of the room may be refined based on one run of radiosity,
increasing the resolution in areas with large variation in light values
(edges of shadows, e.g.), and lowering the resolution in areas with small
variation.


