
External String Sorting:
Faster and Cache-Oblivious

Rolf Fagerberg?, Anna Pagh??, and Rasmus Pagh∗∗

Abstract. We give a randomized algorithm for sorting strings in ex-
ternal memory. For K binary strings comprising N words in total, our
algorithm finds the sorted order and the longest common prefix sequence
of the strings using O(K

B
logM/B(K

M
) log(N

K
) + N

B
) I/Os. This bound is

never worse than O(K
B

logM/B(K
M

) log logM/B(K
M

) + N
B

) I/Os, and im-
proves on the (deterministic) algorithm of Arge et al. (On sorting strings
in external memory, STOC ’97). The error probability of the algorithm
can be chosen as O(N−c) for any positive constant c. The algorithm
even works in the cache-oblivious model under the tall cache assump-
tion, i.e,, assuming M > B1+ε for some ε > 0. An implication of our
result is improved construction algorithms for external memory string
dictionaries.

1 Introduction

Data sets consisting partly or entirely of string data are common: Most database
applications have strings as one of the data types used, and in some areas, such as
bioinformatics, web retrieval, and word processing, string data is predominant.
Additionally, strings form a general and fundamental data model of computer
science, containing e.g. integers and multi-dimensional data as special cases.

In internal memory, sorting of strings is well understood: When the alphabet
is comparison based, sorting K strings of total length N takes Θ(K log K + N)
time (see e.g. [8]). If the alphabet is the integers, then on a word-RAM the time
is Θ(SortInt(K) + N), where SortInt(K) is the time to sort K integers [3].

In external memory the situation is much less clear. Some upper bounds have
been given [7], along with matching lower bounds in restricted models of compu-
tation. As noted in [7], the natural upper bound to hope for is O(K

B logM/B(K
M)+

N
B) I/Os, which is the sorting bound for K single characters plus the complexity
of scanning the input. In this paper we show how to compute (using randomiza-
tion) the sorted order in a number of I/Os that nearly matches this bound.

1.1 Models of Computation

Computers contain a hierarchy of memory levels, with large differences in access
time. This makes the time for a memory access depend heavily on what is cur-
? University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark. Email:

rolf@imada.sdu.dk
?? IT University of Copenhagen, Rued Langgaards Vej 7, 2300 København S, Denmark.

Email: {annao,pagh}@itu.dk

rently the innermost level containing the data accessed. In algorithm analysis,
the standard RAM (or von Neumann) model is unable to capture this, and ex-
ternal memory models were introduced to better model these effects. The model
most commonly used for analyzing external memory algorithms is the two-level
I/O-model [1], also called the External Memory model or the Disk Access model.
The I/O-model approximates the memory hierarchy by modeling two levels, with
the inner level having size M , the outer level having infinite size, and transfers
between the levels taking place in blocks of B consecutive elements. The cost
measure of an algorithm is the number of memory transfers, or I/Os, it makes.

The cache-oblivious model, introduced by Frigo et al. [17], elegantly gener-
alizes the I/O-model to a multi-level memory model by a simple measure: the
algorithm is not allowed to know the value of B and M . More precisely, a cache-
oblivious algorithm is an algorithm formulated in the RAM model, but analyzed
in the I/O-model, with an analysis valid for any value of B and M . Cache re-
placement is assumed to take place automatically by an optimal off-line cache
replacement strategy. Since the analysis holds for any B and M , it holds for all
levels simultaneously. See [17] for the full details of the cache-oblivious model.

Over the last two decades, a large body of results for the I/O-model has been
produced, covering most areas of algorithmics. For the newer cache-oblivious
model, introduced in 1999, already a sizable number of results exist. One of the
fundamental facts in the I/O-model is that comparison-based sorting of N el-
ements takes Θ(Sort(N)) I/Os [1], where Sort(N) = N

B logM/B
N
M . Also in the

cache-oblivious model, sorting can be carried out in Θ(Sort(N)) I/Os, if one
makes the so-called tall cache assumption M ≥ B1+ε [10, 17]. This assumption
has been shown to be necessary [11]. Another basic fact in the I/O-model is
that permutation takes Θ(min{Sort(N), N}), assuming that elements are indi-
visible [1].

The subject of this paper is sorting strings in external memory models. Below,
we discuss existing results in this area. For a general overview of results for
external memory, refer to the recent surveys [4, 21, 23, 24] for the I/O-model,
and [6, 9, 13, 21] for the cache-oblivious model.

1.2 Previous Work

Arge et al. [7] were the first to study string sorting in external memory, introduc-
ing the size N of the input and the number K of strings as separate parameters.
Note that the problem is at least as hard as sorting K words1, and also requires
at least N/B I/Os for reading the input. In internal memory, i.e., for B = 1,
there are algorithms that meet this lower bound [3, 8]. However, it remains an
open problem whether this is possible in external memory for general B.

Arge et al. give several algorithms obeying various indivisibility restrictions.
The complexity of these algorithms depends on the number K1 of strings of less
than one block in length, and the number K2 of strings of at least one block

1 See Section 1.3 below for the model of computation.

in length. The total length of short and long strings is denoted N1 and N2,
respectively. The fastest algorithm runs in

O(min(K1 logM K1,
N1
B logM/B(N1

M)) + K2 logM K2 + N
B) I/Os.

Under the tall cache assumption this simplifies to

O(N1
B logM K1 + K2 logM K2 + N2

B) I/Os.

The first term is the complexity of sorting the short strings using external merge
sort. The second term states a logarithmic (base M) I/O cost per long string.
The third term is the complexity of reading the long strings. Each of the three
terms may be the dominant one. Assume for simplicity that all K strings have the
same length. If they are short, the first term obviously dominates. If their length
is between B and B logM K, the second term dominates. For longer strings, the
third term dominates, i.e., sorting can be done in scanning complexity. Note
that the upper bound is furthest from the lower bound for strings with a length
around one block.

Arge et al. also consider “practical algorithms” whose complexity depends on
the alphabet size. However, because of the implicit assumption that the alphabet
has size NΘ(1) (it is assumed that a character and a pointer uses the same space,
within a constant factor), none of these algorithms are better than the above
from a theoretical perspective.

Note that prior to our work there are no direct results on cache-oblivious
string sorting, except the bound O(Sort(N)), which can be derived from suffix
tree/array construction algorithms [14, 19].

1.3 Our results.

Before we state our results, we discuss the model and notation. First of all, we
assume the input to be binary strings. This is no restriction in practice, since
any finite alphabet can be encoded as binary strings such that replacing each
character with its corresponding string preserves the ordering of strings. How-
ever, to facilitate a clear comparison with previous results, we will not count the
length of strings in bits, but rather in words of Θ(log N) bits. This is consis-
tent with [7] which assumes that a character and a pointer uses the same space,
within a constant factor. We will also assume that all strings have length at least
one word, which again is consistent with [7]. We will adopt the notation from [7]:

K = # of strings to sort,
N = total # of words in the K strings,
M = # of words fitting in internal memory,
B = # of words per disk block,

where M < N and 1 < B ≤ M/2. We assume that the input sequence x1, . . . , xK

is given in a form such that it can be read in O(N/B) I/Os.

Secondly, we distinguish between standard value-sorting, which produces a
sequence with the input items in sorted order, and the problem of finding the
sorting permutation, i.e., producing a sequence of references to the items in
sorted order (this is equivalent to what is sometimes referred to as rank-sorting,
i.e., computing the rank of all input elements). For strings, the latter is often
enough, as is e.g. the case for string dictionaries. The sorting permutation σ of the
input sequence is the permutation such that σ(i) = j if xj has rank i in the sorted
order. In this definition, the references to strings are their ranks in input order.
If one instead as references wants pointers to the memory locations of the first
characters of the strings, conversion between the two representations can be done
in O(Sort(K)+N/B) I/Os by sorting and scanning. The latter representation is
commonly called the suffix array in the case where the strings are the suffixes of
some base string. Let lcp(xi, xj) be the longest common prefix of xi and xj . By
the lcp sequence we denote the numbers LCP(i) = |lcp(xσ(i), xσ(i+1))|, i.e., the
lengths of the longest common prefixes between pairs of strings consecutive in
sorted order. For the application of string dictionary construction, we will need
this.

Our main result is a Monte Carlo type randomized, cache-oblivious algorithm
which computes the sorting permutation and the lcp sequence. The output is
the sequences σ(1), . . . , σ(K) and LCP(1), . . . ,LCP(K − 1).

Theorem 1. Let c and ε be arbitrary positive constants, and assume that
M > B1+ε. Then there is a randomized, cache-oblivious algorithm that, given
K strings of N words in total, computes the sorting permutation and the lcp
sequence in O(K

B logM/B(K
M) log(N

K) + N
B) I/Os, such that the result is correct

with probability 1−O(N−c).

Note that the I/O bound above coincides with Sort(K) for strings of length
O(1) words, and is never worse than O(Sort(K) log logM/B(K

M) + N
B). (If N

K

exceeds (logM/B(K
M))O(1) then the N/B term will be dominant.) Thus, we have

optimal dependence on N and are merely a doubly logarithmic factor away from
Sort(K). We prove Theorem 1 in Section 2.

The String B-tree [15] is an external memory string dictionary, which allows
(prefix) searches over a set of K strings in O(logB K+P/B) I/Os, where P is the
length of the search string. Constructing the String B-tree over a set of strings is
as hard as finding the sorting permutation. Conversely, from the sorting permu-
tation and the lcp sequence, the String B-tree over the strings can easily be built.
Recently, a cache-oblivious string dictionary with the same searching complexity
as String B-Trees has been given [12], and the same statement about construc-
tion applies to this structure. Hence, one important corollary of Theorem 1 is
the following, shown in Section 3:

Corollary 1. Let c and ε be arbitrary positive constants, and assume that
M > B1+ε. Then there is a randomized, cache-oblivious algorithm that, given
K strings of N words in total, constructs a String B-tree or a cache-oblivious
string dictionary [12] over the strings in O(K

B logM/B(K
M) log(N

K) + N
B) I/Os,

such that the result is correct with probability 1−O(N−c).

Again, this bound is never worse than O(Sort(K) log logM/B(K
M)+ N

B). If one
wants not only the sorting sequence, but also the strings to appear in memory
in sorted order, they must be permuted. In Section 4, we discuss methods for
permuting strings based on knowledge of the sorting sequence. The methods
are straightforward, but nevertheless show that also for the standard value-
sorting problem (i.e. including permuting the strings), our main result leads to
asymptotical improvements in complexity, albeit more modest than for finding
the permutation sequence.

1.4 Other Related Work.

Sorting algorithms for the word RAM model have developed a lot in the last
decade. The new RAM sorting algorithms take advantage of the bit represen-
tation of the strings or integers to be sorted, in order to beat the Ω(K log K)
lower bound for sorting K items using comparisons. The currently fastest sorting
algorithm for K words runs in time O(K

√
log log K), expected [18]. This implies

an external memory algorithm running in the same I/O bound, which is better
than O(Sort(K)) if K is sufficiently large (K = Mω(B) is necessary).

Andersson and Nilsson [3] have shown how to reduce sorting of K strings of
length N to sorting of O(K) words, in O(N) expected time. This means that
the relation between string sorting and word sorting on a word RAM is very
well understood. The currently fastest word sorting algorithm gives a bound
of O(K

√
log log K + N) expected time. Again, using this directly on external

memory gives a bound better than other string sorting bounds (including those
in the present paper) for certain extreme instances (very large sets of not too
long strings).

If the length w of the machine words to be sorted is sufficiently large in
terms of K, there exists an expected linear time word RAM sorting algorithm.
Specifically, if w > (log K)2+ε, for some constant ε > 0, K words can be sorted in
expected O(K) time [2]. To understand the approach of the algorithm it is useful
to think of the words as binary strings of length w. The key ingredient of the
algorithm is a randomized signature technique that creates a set of “signature”
strings having, with high probability, essentially the same trie structure (up to
ordering of children of nodes) as the original set of strings. If the word length is
large, the signatures can be made considerably shorter than the original strings,
and after a constant number of recursive steps they can be sorted in O(K) time.
To sort the original strings, one essentially sorts the parts of the original strings
that correspond to branching nodes in the trie of signatures.

Our algorithm is inspired by this, and uses the same basic approach as just
described. However, the details of applying the technique to external memory
strings are quite different. For example, it is easier for us to take advantage of the
reduction in string size. This means that the best choice in our case is to use the
signatures to decrease the string lengths by a constant factor at each recursive
step, as opposed to the logarithmic factor used in [2]. Also, in the cache-oblivious
model, it is not clear when to stop the recursion.

Using shorter strings to represent the essential information about longer ones
was proposed already in [20]. Indeed, similar to the randomized signature scheme
discussed above, the idea of Karp-Miller-Rosenberg labeling [20] is to divide the
strings into substrings, and replace each substring with a shorter string. In par-
ticular, for each distinct substring one needs a unique shorter string to represent
it. This can even be done such that the lexicographical order is preserved. The
technique of [20] avoids randomization, but requires in each recursive step the
sorting of the substrings that are to be replaced, which takes O(Sort(N)) and
hence will not improve on the known external memory upper bounds. The “prac-
tical algorithms” in [7] use this technique, but as stated above, these algorithms
are asymptotically inferior to the best algorithm in [7].

2 Proof of main theorem

In this section we will prove Theorem 1. First we describe in Section 2.1 a
recursive algorithm that finds the structure of the unordered trie of strings in
the set S that is to be sorted. The algorithm is randomized and produces the
correct trie with high probability. Each step of the recursion reduces the total
length of the strings by a constant factor using a signature method. Section 2.2
then describes how to get from the unordered trie to the ordered trie, from
which the sorting permutation and the lcp sequence can easily be found. The
crux of the complexity bound is that at each recursive step, as well as at the
final ordering step, only the (at most K) branching characters of the current trie
are sorted, and the current set of strings is scanned. The use of randomization
(hashing) allows the shorter strings of the next recursive step to be computed
in scanning complexity (as opposed to the Karp-Miller-Rosenberg method), but
also means that there is no relation between the ordering of the strings from
different recursive levels. However, for unordered tries, equality of prefixes is all
that matters.

Our algorithm considers the input as a sequence of strings x1, . . . , xK over
an alphabet of size Θ(N2+c), by dividing the binary strings into chunks of
d(2 + c) log Ne bits, where c is the positive constant of Theorem 1. Note that
this means that the total length of all strings is O(N) characters. Dividing into
chunks may slightly increase the size of the strings, because the length is effec-
tively rounded up to the next multiple of the chunk size. However, the increase is
at most a constant factor. To simplify the description of our algorithm we make
sure that S is prefix free, i.e., that no string in S is a prefix of another string in
S. To ensure this we append to x1, . . . , xK special characters $1, . . . ,$K that do
not appear in the original strings. Extending the alphabet with K new charac-
ters may increase the representation size of each character by one bit, which is
negligible.

2.1 Signature reduction.

We will now describe a recursive, cache-oblivious algorithm for finding the struc-
ture of the blind trie of the strings in S, i.e., the trie with all unary nodes removed

h(ba)

1 54

h(ba)

h(ac)

h(bc)
h(ab)

1 4 5323 2

b

b acba

a

a
b a

c

b
h(aa) h(bb)

Fig. 1. We consider the set of strings S = {baaa, baab, babc, acbb, acba}. Left is
T (S′), where each character is a hash function value of two characters from S. Right
is T (S), which can be computed from T (S′) by considering each branching node in
T (S′) and its branching characters, each of which corresponds to a unique string of
two characters from S.

(blind tries [15] are also known as compressed tries or Patricia tries [22]). Recall
that for now, we are only concerned with computing the unordered blind trie
T (S). We represent each node p as follows (where for brevity, a node is identified
with the string represented by the path from the root to the node):

– A unique ID, which is a number in {1, . . . , 2K}.
– The ID of its parent node q, which is the longest proper prefix of p in S, if

any.
– The number i of a string xi ∈ S having p as a prefix (a representative string).
– Its branching character, i.e., the first character in p after q, and its position

in p.

Our algorithm handles strings in S of length 1 separately, in order to be able
to not recurse on these strings. Because no string is a prefix of another string, the
strings of length 1 are leaf children of the root in T (S). Thus we may henceforth
assume that S contains only the strings of length ` ≥ 2, and add the strings of
length 1 to the trie at the end.

The sequence S′ is derived from S by hashing pairs of consecutive characters
to a single character, using a function chosen at random from a universal family
of hash functions [16]. A string of ` characters in S will correspond to a string of
d`/2e characters in S′. Since all strings have length at least 2, the total length
of the strings in S′ is at most 2

3N , as desired. The set S′ can be computed in a
single scan of S, using O(N/B) I/Os. We denote the strings of S′ by x′1, . . . , x

′
K

such that they correspond one by one to the strings x1, . . . , xK of S, in this
order. The trie T (S′) is computed recursively.

If there are no hash function collisions (i.e., no pair of distinct characters
with the same hash function value), the longest common prefix of any two strings
x′i1 , x

′
i2
∈ S′ is of length b|lcp(xi1 , xi2)|/2c. Intuitively, this means that T (S′) has

the same structure as T (S), only “coarser”. To get T (S) from T (S′) we basically
need to consider each node and its children, and introduce new branching nodes
in this part of the trie by considering the (pairs of) characters of S corresponding
to the branching characters. Figure 1 shows an example.

Assuming that the hash function has no collisions, T (S) can be computed
from T (S′) as follows:

1. Sort the nodes of T (S′) according to the numbers of their representative
strings in S′, and secondly for each representative string according to the
position of the branching character. Note that this can be done in a single
sorting step (using a cache-oblivious sorting algorithm).

2. By scanning the strings of S in parallel with this sorted list, we can annotate
each node p, having representative string xi, with the two characters cp,1cp,2

from xi that correspond to its branching character (their position can be
computed from the position of the branching character in x′i).

3. Sort the annotated nodes of T (S′) according to the IDs of their parents, and
for each parent ID according to cp,1 (using a single sorting step).

4. We can now construct the nodes of T (S) by scanning this sorted list. Con-
sider the children of a node p, occurring together in the list. There are two
cases:
(a) If all children have the same cp,1 we can basically copy the structure

of T (S′). That is, we keep a node for each child p, with the same ID,
parent ID, and representative string number as before, and with cp,2 as
branching character (its position can be computed as above).

(b) If there are children having different cp,1 we introduce a new node for
each group of at least two children with the same cp,1 (getting new IDs
using a global internal memory counter). The branching character for
such a node is cp,1, the parent ID is that of p, and any representative
string of a child can be used. Again, we keep a node for each child p
with the same ID as in T (S′). If no other child has the same cp,1 the
node keeps its parent ID, with branching character cp,1. If two or more
children have the same cp,1, their parent is the new node with branching
character cp,1, and their branching characters are their cp,2 characters.

Lemma 1. The above algorithm uses O(N/B) blocks of external space and
O(K

B logM/B(K
M) log(N

K) + N/B) I/Os. It computes T (S) correctly with prob-
ability 1−O(N−c),

Proof sketch. Since the length of the strings is geometrically decreasing during
the recursion, the total length of all strings considered in the recursion is O(N).
This means that the space usage on external memory is O(N/B) blocks, and
that the number of pairs of characters hashed is O(N). In particular, since
the collision probability for any pair of inputs to the universal hash function is
N−2−c, we have that with probability 1−O(N−c) there are no two distinct pairs
of characters that map to the same character (i.e., no hash function collisions).
In this case, note that all sets of strings in the recursion are prefix free, as
assumed by the algorithm. The argument that the trie is correct if there is no
hash function collision is based on the fact that the longest common prefixes in
S correspond to longest common prefixes of half the length (rounded down) in
S′. Details will be given in the full version of this paper.

We now analyze the I/O complexity. At the ith level of the recursion the total
length of the strings is bounded by (2

3)iN . In particular, for i > log3/2(N/K)
the maximum possible number of strings at each recursive level also starts to
decrease geometrically (since the number of strings is bounded by the total length
of the strings). Finally note that when the problem size reaches M , the rest of
the recursion is completed in O(M/B) I/Os.

Let j = blog3/2(N/K)c. We can bound the asymptotic number of I/Os used
as follows:

j∑
i=0

(
K
B logM/B

(
K
M

)
+

“
2
3

”i
N

B

)
+

∞∑
i=j+1

(“
2
3

”i−j
K

B logM/B

(“
2
3

”i−j
K

M

)
+

“
2
3

”i
N

B

)

=
(

K
B logM/B(K

M) log(N
K) + N

B

)
+
(

K
B logM/B(K

M) + N
B

)
.

The first term is the dominant one, and identical to the bound claimed. ut

2.2 Full algorithm.

We are now ready to describe our string sorting algorithm in its entirety. We
start by finding T (S) using the algorithm of Section 2.1. What remains to find
the sorting permutation is to order the children of each node according to their
branching character and traverse the leaves from left to right. We do this by a
reduction to list ranking, proceeding as follows:

1. Sort the nodes according to parent ID, and for each parent ID according to
branching character, in a single sorting step.

2. We now construct a graph (which is a directed path) having two vertices,
vin and vout, for each vertex v of T (S).
(a) For a node with ID v having d (ordered) children with IDs v1, . . . , vd we

construct the edges (vin, vin
1), (vout

1 , vin
2), . . . , (vout

d−1, v
in
d), (vout

d , vout). We
annotate each “horizontal” edge (vout

i , vin
i+1) by the length of the lcp of

the representative strings of vi and vi+1 (considered as bit strings). This
number can be computed from the branching characters of vi and vi+1

and their positions.
(b) For a leaf node v we construct the edge (vin, vout), and annotate it with

the number of its representative string.
3. Run the optimal cache-oblivious list ranking algorithm of [5] on the above

graph to get the edges in the order they appear on the path.
4. Scan the list, and report the numbers annotated on the edges corresponding

to the leaves in T (S) (giving the sorting permutation), and the numbers on
the horizontal edges (giving the lcp sequence).

The work in this part of the algorithm is dominated by the sorting and list
ranking steps, which run in O(K

B logM/B(K
M) + N/B) I/Os. Again, we postpone

the (straightforward) correctness argument to the full version of this paper. This
concludes the proof sketch of Theorem 1.

3 Construction of External String Dictionaries

In this section, we prove Corollary 1. A String B-tree [15] is a form of B-tree
over pointers to the strings. Each B-tree node contains pointers to Θ(B) strings,
as well as a blind trie over these strings to guide the search through the node.
The bottom level of the tree contains pointers (in sorted order) to all strings.
These pointers are divided into groups of Θ(B) consecutive pointers, and a node
is built on each group. For each node, the left-most and the right-most pointer
are copied to the next level, and these constitute the set of pointers for this next
level. Iterating this process defines all levels of the tree.

Building a blind trie on a set of strings is straightforward given the sequence
of pointers to the strings in sorted order and the associated lcp sequence: insert
the pointers as leaves of the trie in left-to-right order, while maintaining the
right-most path of the trie in a stack. The insertion of a new leaf entails popping
from the stack until the first node on the right-most path is met which has a
string depth at most the length of the longest common prefix of the new leaf
and its predecessor. The new leaf can now be inserted, possibly breaking an edge
and creating a new internal node. The splitting characters of the two edges of
the internal node can be read from the lcp sequence. The new internal node and
the leaf is then pushed onto their stack.

For analysis, observe that once a node is popped from the stack, it leaves the
right-most path. Hence, each node of the trie is pushed and popped once, for a
total of O(S) stack operations, where S is the number of strings represented by
the blind trie. Since a stack implemented as an array is I/O-efficient by nature,
the number of I/Os for building a blind trie is O(S/B).

Hence, the number of I/Os for building the lowest level of the String B-tree is
O(K/B). Finding the pointers in sorted order and their corresponding lcp array
for the next level is straightforward, using that the lcp value between any pairs of
strings is the minimum of the lcp values for all intervening neighboring (in sorted
order) pairs of strings. Hence, the lcp value of the left-most and right-most leaf
in the trie in a String B-tree node can be found by scanning the relevant part
of the lcp array. As the sizes of each level decreases by a factor Θ(B), building
the entire String B-tree is dominated by the building of its lowest level.

For the cache-oblivious string dictionary [12], it is shown in [12] how to take
a blind trie (given as an edge list) for a set of K strings, and build a cache-
oblivious search structure for it, using Sort(K) I/Os. The construction algorithm
works in the cache-oblivious model. Since an array-based stack is I/O efficient
also in the cache-oblivious model, the blind trie can be built cache-obliviously
by the method above. The ensuing search structure provides a cache-oblivious
dictionary over the strings.

4 Bounds for Permuting Strings

In this section, we discuss methods for permuting the strings into sorted or-
der in memory, based on knowledge of the sorting sequence. Our methods are

straightforward, but nevertheless show that also for the standard sorting prob-
lem (i.e. including permuting the strings), our main result leads to asymptotical
improvements (albeit modest) in complexity.

In the cache-aware case, knowledge of B allows us to follow Arge et al. [7],
and divide the strings into short and long strings. We use their terminology
K1,K2, N1, N2 described in Section 1.2. The long strings we permute by direct
placement of the strings, based on preprocessing in O(Sort(K) + N/B) I/Os
which calculates the position of each string. The short strings we permute by
sorting, using the best algorithm from [7] for short strings. For simplicity of
expression, we assume a tall cache. Then the complexity of our randomized
sorting algorithm, followed by the permutation procedure above, is

O(K
B logM (K) log(N

K) + N
B + N1

B logM (K1) + K2) .

The bound holds for any choice of length threshold between short and long
strings. For the threshold equal to B, it is easy to see that the bound improves on
the bound of [7] for many parameter sets with long strings. For specific inputs,
other thresholds may actually be better.

Turning to the cache-oblivious situation, we can also, on instances with long
strings, improve the only existing bound of O(Sort(N)). For simplicity assume
a tall cache assumption of M ≥ B2. If N ≤ K2, we permute by sorting the
words of the strings in O(Sort(N)) as usual. Else, we place each string directly
(using preprocessing as above). If M > N , everything is internal. Otherwise,
N/K ≥

√
N ≥

√
M ≥ B, so N/B ≥ K, and we can afford one random I/O per

string placed, leading to permutation in O(Sort(K) + N/B).

References

1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, 1988.

2. A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sorting in linear time? J.
Comput. System Sci., 57(1):74–93, 1998.

3. A. Andersson and S. Nilsson. A new efficient radix sort. In Proceedings of the
35th Annual Symposium on Foundations of Computer Science (FOCS ’94), pages
714–721. IEEE Comput. Soc. Press, 1994.

4. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313–358. Kluwer
Academic Publishers, 2002.

5. L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro.
Cache-oblivious priority queue and graph algorithm applications. In ACM, ed-
itor, Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC ’02), pages 268–276. ACM Press, 2002.

6. L. Arge, G. S. Brodal, and R. Fagerberg. Cache-oblivious data structures. In
D. Mehta and S. Sahni, editors, Handbook on Data Structures and Applications.
CRC Press, 2005.

7. L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter. On sorting strings in external
memory (extended abstract). In ACM, editor, Proceedings of the 29th Annual ACM

Symposium on Theory of Computing (STOC ’97), pages 540–548. ACM Press,
1997.

8. J. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In
Proc. 8th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 360–369,
1997.

9. G. S. Brodal. Cache-oblivious algorithms and data structures. In Proc. 9th Scandi-
navian Workshop on Algorithm Theory, volume 3111 of Lecture Notes in Computer
Science, pages 3–13. Springer Verlag, Berlin, 2004.

10. G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. In Proc.
29th International Colloquium on Automata, Languages, and Programming, volume
2380 of Lecture Notes in Computer Science, pages 426–438. Springer Verlag, Berlin,
2002.

11. G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proc. 35th
Annual ACM Symposium on Theory of Computing, pages 307–315, 2003.

12. G. S. Brodal and R. Fagerberg. Cache-oblivious string dictionaries. In Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’06),
2006. To appear.

13. E. D. Demaine. Cache-oblivious data structures and algorithms. In Proc. EFF
summer school on massive data sets, Lecture Notes in Computer Science. Springer,
To appear.

14. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. J. ACM, 47(6):987–1011, 2000.

15. P. Ferragina and R. Grossi. The string B-tree: a new data structure for string
search in external memory and its applications. J. ACM, 46(2):236–280, 1999.

16. M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. System Sci., 48(3):533–551, 1994.

17. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache oblivious
algorithms. In 40th Annual IEEE Symposium on Foundations of Computer Science,
pages 285–298. IEEE Computer Society Press, 1999.

18. Y. Han and M. Thorup. Integer sorting in O(n
√

log log n) expected time and linear
space. In Proceedings of the 43rd Annual Symposium on Foundations of Computer
Science (FOCS ’02), pages 135–144, 2002.

19. J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In
Proc. 30th Int. Colloquium on Automata, Languages and Programming (ICALP),
volume 2719 of Lecture Notes in Computer Science, pages 943–955. Springer Ver-
lag, Berlin, 2003.

20. R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated
patterns in strings, trees and arrays. In Proceedings of the 4th Annual ACM Sym-
posium on Theory of Computing (STOC ’72), pages 125–136, 1972.

21. U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory Hierar-
chies, volume 2625 of Lecture Notes in Computer Science. Springer Verlag, Berlin,
2003.

22. D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 15(4):514–534, Oct. 1968.

23. J. S. Vitter. External memory algorithms and data structures: Dealing with MAS-
SIVE data. ACM Computing Surveys, 33(2):209–271, 2001.

24. J. S. Vitter. Geometric and spatial data structures in external memory. In D. Mehta
and S. Sahni, editors, Handbook on Data Structures and Applications. CRC Press,
2005.

