
Institut for Matematik og Datalogi 22. januar 2017
Syddansk Universitet, Odense RF

The Prefix Table

As a building block in the algorithm for finding the BMShift table, the
following values will prove useful. For a string X of length m (and first
character indexed by zero), we define the table Pref(i) of longest prefixes as
follows:

Pref(i) = | lcp(X,X[i..(m− 1)])| for 0 ≤ i ≤ m

That is, Pref(i) is the length of the longest common prefix between X[i..(m− 1)]
and X. This is illustrated below (shaded area means matching characters):

The goal of this note is to give an algorithm for finding Pref(i) for all 0 ≤
i ≤ m in time O(m). The overall idea of the algorithm is to find Pref(i)
for increasing i, exploiting already found information when looking at the
next i.

To capture the already found information, it will be useful to consider the
ending point in X of the prefix in X[j..(m − 1)] corresponding to Pref(j).
This ending point is j + Pref(j), as can be seen in the following figure:

Central to the algorithm is the largest such ending point found so far. We
make the following definitions to describe this value and a j which generated
it:

g(i) = max
0<j<i

{j + Pref(j)} (1)

f(i) = argmax
0<j<i

{j + Pref(j)} (2)

Thus, g is the largest such ending point found so far (excluding the trivial
knowledge that Pref(0) = m) and f is a j generating it.

For increasing i, g is clearly non-decreasing. Each iteration of the algorithm
increments i, which may make g grow by some value ti ≥ 0. If the iteration
can be performed in O(1+ ti) time, the total time will be O(

∑n
i=0(1+ ti)) =

O(n +
∑n

i=0 ti) = O(n), since
∑n

i=0 ti is the final value of g, which cannot
exceed n. We now describe the details of the algorithm carrying out that
plan.

For an iteration generating Pref(i), we assume for now that g > i. This
situation is illustrated below (note that f < i always holds by the definition
of f):

2

Note for later use that the two characters pointed out in the figure above
must differ (else Pref(f) would be larger).

To find Pref(i), we must compare X[i..(m − 1)] and X, starting from the
left. By the matching in the figure above we may as well compare X[(i −
f)..(m− 1)] and X. We distinguish three cases:

Case I: Pref(i− f) > g − i
Case II: Pref(i− f) < g − i
Case III: Pref(i− f) = g − i

Note that by the definition of f , we have 1 ≤ f ≤ i − 1, hence we know
1 ≤ i − f ≤ i − 1. Hence, Pref(i − f) has been found at the current time,
and (assuming correct values for f and g are maintained by the algorithm)
the algorithm can therefore distinguish between the cases.

Case I is illustrated below.

Since the two characters pointed out differ, we can deduce from the figure
that Pref(i) = g − i, and that g and f do not change.

Case II is illustrated below.

3

Since the two characters pointed out differ (or Pref(i− f) would have been
larger), we can deduce from the figure that Pref(i) = Pref(i− f), and that
g and f do not change.

Case III is illustrated below.

In this case, we can only deduce that Pref(i) ≥ g − i, and we must find
how much Pref(i) is longer by comparing characters in X[g..(m − 1)] and
X[(i− g)..(m− 1)] left to right. If Pref(i) ends up being increased by ti, we
have made 1 + ti comparisons. The value of g has been increased by ti, and
i is the new value for f .

Here is a code implementing the above algorithmic idea:

Pref[0] = m

g = 0

f = 1

FOR i = 1 TO m-1

IF i < g AND Pref[i-f] != g-i

Pref[i] = min{Pref[i-f],g-i}

ELSE

g = max{g,i}

f = i

WHILE g < m AND X[g] == X[g-f]

g++

Pref[i] = g-f

We claim that this algorithm maintains the following invariant at the start of
each iteration of the FOR-loop: For 0 ≤ j < i, Pref[j] contains the correct
value Pref(j), and g and f obeys (1) and (2), respectively. More precisely,
this invariant holds at the start of the second iteration and onwards (which
is in line with (1) and (2) only being meaningful for i ≥ 2).

4

We now prove the claim by induction on the FOR-loop. The base case is a
little longer then usual: The first line clearly sets Pref[0] correctly to the
entire string length. At the start of the first iteration, we have i = 1 and
g = 0, hence the ELSE case is taken in this first iteration (note that the
only use of the initialization f = 1 is to make all elements of the IF test
well-defined). After the two first lines of the ELSE case, we have g = f = 1.
Hence, the WHILE-loop is a simple left-to-right scan of X[1..(m − 1)] and
X[0..(m− 1)] which correctly sets Pref[1] at the exit of that loop. Also at
that exit, g and f obeys (1) and (2) for i = 2 (there is only one j in the
maximizations in (1) and (2), namely j = 1). Hence, the invariant is true
at the start of the second iteration of the FOR-loop. This proves the basis of
the induction.

For the induction step, we assume the invariant is true at the beginning of
one iteration, and must prove it true at the beginning of the next iteration.

If the IF branch is taken, we are in Case I or II above. The analysis for
these cases shows that Pref[0] is set correctly, and that g and f does not
need to change for (1) and (2) to continue to hold. Hence, the invariant is
true at the start of the next iteration.

If the ELSE branch is taken, we separate into two cases:

Case A: Pref[i− f] = g− i and i < g

Case B: i ≥ g

Case A is exactly Case III above. By the analysis of Case III, it is correct to
set f to i. The line with max does not change the value of g. The WHILE-
loop then performs the left-to-right scan from the analysis of Case III, and
thus at exit leaves g and Pref[i] correctly set. Hence, the invariant is true
at the start of the next iteration.

In Case B, i ≥ g means that we know that i will be the correct value for f
for the new round, since i + Pref(i) will be at least as large as the current
value of g (this is true even if i = g and it turns out that Pref(i) = 0). The
code starts by raising g to i, as this is the minimal new value for g, and sets
f to i (correct, at argued above). As both g and f are equal to i at the start
of the WHILE-loop, g-f is zero. Thus, the WHILE-loop performs a left-to-right
scan of X[i..(m− 1)] and X[0..(m− 1)], which is the straight-forward way
to find Pref(i). If the WHILE-loop runs for ti rounds, we have ti = Pref(i).
Since g− f = ti, Pref[i] is correctly set. Also, g is left at is correct value.
Hence, the invariant is seen to be true at the start of the next iteration.

5

This proves the induction step, and hence the invariant. From the first part
of the invariant, Pref[i] is correct for all i when the algorithm terminates.
Hence, the algorithm is correct.

For the time analysis, all iterations of the WHILE-loop will increase g. Nowhere
in the code can g decrease (and it may even increase outside the WHILE-loop
in Case B). As g starts out zero and cannot by larger than m (this is true
for g in (1) by construction, as all values maximized over are at most m,
and our invariant shows that g in the code fulfills (1)), at most m iterations
of the WHILE-loop can take place in total in the algorithm. The rest of the
work of the algorithm is clearly O(m). In conclusion, the algorithm runs in
O(m) time.

We note that in the last iteration of the FOR-loop with i equal to m, there
is a reference X[m] in the third to last code line, which is a reference to
a non-existing character past the end of the string. If the programming
language has short-circuiting evaluation of AND (such as many languages
of C-ancestry, including Java) this is not a problem (the reference will not
be executed). Else, the FOR-loop should only run until m-1, and Pref[m]

should be set to its value zero separately. If the programming language has
short-circuiting evaluation of AND, the third line of the code initializing f

can be removed (it is only there for the first execution of the IF test).

6

