
Department of Mathematics and Computer Science January 18, 2017
University of Southern Denmark RF

Edit Distance and Friends

The edit distance is a measure of diffence between two strings X and Y based
the number of edit operations needed to turn X into Y . An edit operation
is one the following:

insert(i, a): Insert the character a between position i and i+ 1 in
the string.

delete(i) Delete the character at position i in the string.
change(i, a) Change the character at position i in the string into

the character a (required to be different from the ex-
isting character at position i.

We define edit(X,Y) to be the minimal number of such operations needed to
change X into Y . One can easily argue that this is a metric (is non-negative,
is zero iff X = Y , is symmetric in X and Y , fulfills the triangle inequality).

Consider a sequence σ of edit operations changing X into Y . Assume that
characters have an ID, and that this ID is kept during change operations.
Then X (the string at the start σ) consists of character i) IDs also existing in
Y and ii) character IDs not existing in Y . Similarly, Y (the string at the end
of the σ) consists of iii) character IDs also existing in X and iv) character IDs
not existing in X. Finally, v) other character IDs may been introduced and
later removed during the σ. Assume that σ is shortest possible. Then there
can be no characters of type 5). Also, IDs of type ii) are simply deleted (no
change operations first) and IDs of type iv) are simple inserted (no change
operations afterwards). Types i) and iii) are the same IDs. These may either
be unchanged, or be changed by a single change operation.

This analysis tells us that any shortest sequence (which are the ones involved
in the definition of edit(X,Y)) can be represented as follows, where abacus

is turned into cactus:

abac_us

_cactus

In the first column, a is deleted, in the second column b is changed to c,
in the fifth column t is inserted, and in the rest of the columns there is no
change. The length of this edit sequence is three, which actually is the value
of edit(abacus, cactus).

Thus, when studying edit distance between two strings X and Y , we may
just as well study alignments X and Y . An alignment of X and Y consists
of some insertions of _ symbols in both strings, subject the constraints that
the two resulting strings have the same lenght and that no _ symbols end
up in the same positions in the two strings. The cost of an alignment is the
number of positions not having the same character in the two strings. As
is clear from above, any optimal edit sequence corresponds to an alignment
of the same cost, and any alignment corresponds to an edit sequence of
the same cost. In bioinformatics, the alignment type above is called global
alignment (to separate it from another concept called local alignment). The
edit distance is also known the Levenshtein distance.

A dynamic programming solution for edit distance (alias global alignment,
alias Levenshtein distance) can be developed along the lines of the dynamic
programming solution for LCS: Let edit(i, j) be the edit distance between
X[1..i] and Y [1..j] and consider the following recursion.

edit(i, j) =

j if i = 0
i if j = 0
min{edit(i− 1, j) + 1, edit(i, j − 1) + 1,

edit(i− 1, j − 1) + δ(i, j)} if i, j > 0

where δ(i, j) is 1 if xi 6= yj and is 0 if xi = yj . The first two cases of the
recursion are correct because to edit from (to) an empty string to (from) a
string of length k, k character insertions (deletions) are necessary and suffi-
cient. For the last case of the recursion, note that in an optimal alignment
for X[1..i] and Y [1..j], the possibilities for the last pair are of the following
types.

...a

...a

a)

...a

...b

b)

...a

..._

c)

..._

...a

d)

If xi 6= yj , cases b), c), and d) are possible. If xi = yj , cases a), c), and d)
are possible. Correctness of the last case then follows by removing the last

2

column of an optimal alignment and running the usual “optimal subprob-
lems” argument type (see LCS-notes for the written out argumentation for
lcs(i, j)).

Entirely similar to the LCS problem (see the notes on this), the edit distance
between X and Y can be found as edit(m,n), where m = |X| and n = |Y |,
using time O(mn) and space O(min{m,n}); an actual edit sequence can be
found by backtracking over the entire table (raising the space requirement
to Θ(mn)); and the idea of Hirschberg’s algorithm can be applied to reduce
this space to O(min{m,n}). The last claim requires that one argues for a
recursive formula for edit(i, j) of the type used in Hirschberg’s algorithm.

Note that viewing the edit-table as an oriented grid graph by connecting
entry (i, j) by edges to entries (i+ 1, j), (i, j+ 1) and (i+ 1, j+ 1), we arrive
at a DAG. If we put weights one on horizontal and on vertical edges, and
put weight δ(i, j) on diagonal edges, alignments of X and Y and paths from
(0, 0) to (m,n) in this graph are in a natural one-to-one correspondence
(each step of the path generates a column of the alignment, and vice versa).
Hence, shortest paths algorithms may be used to find edit(m,n) (the dis-
tance from (0, 0) to (m,n) in the graph) and a corresponding edit sequence
(a corresponding shortest path). In particular, the O(V +E) time shortest
path algorithm for DAGs from the course DM507 may be used. It gives the
same time and space results as those above (when not using Hirschberg’s al-
gorithm), and actually is essentially the same as the dynamic programming
solution described.

The edit distance defined above is easily generalized to charging different
costs for insertion, deletion and change operations (even to a cost for the
change operation which depends on the two characters in question, which
may be desirable in biology for DNA strings). The only difference is that the
value 1 at appropriate places is changed to some other value in the recursion.

For edit distance with no changes (corresponding to a cost for changes of
∞), we have the following relation:

2 lcs(m,n) = m+ n− edit(m,n)

which shows that the LCS problem is a special case of the edit distance
problem. This relation is seen by noting that for an alignment with no
character changes, the only possibilities for pairs in the alignment are the
following.

3

...a...

...a...

...a...

..._...

..._...

...a...

Hence, any alignment (with no character changes) corresponds to a common
subsequence, and any common subsequence corresponds to an alignment
(with no character changes). Here is an illustration of such an alignment
and its corresponding common subsequence of length four:

_abac_us

ca__ctus

_abac_us

| | ||

ca__ctus

We see that total number of characters is twice the number of pairs of
characters (hence, twice the length of the common subsequence) plus the
remaining number of alignment columns (each with _ as a member of the
column, hence this number is exactly the cost of the alignment). On the
other hand, the number of characters is of course m+ n. Therefore, for any
pair of corresponding alignment (with no character changes) and common
subsequence, of costs a and s, respectively, we have 2s+ a = m+ n. Thus,
the maximum possible value of s will be in a pair with the minimum possible
value for a. This shows 2 lcs(m,n) + edit(m,n) = m+ n.

In DNA sequences in cells, entire pieces are often inserted and deleted in
one go, leading to stretches of the _ char. It is a more realistic cost measure
if such events incur a cost closer to a single insertion or deletion, rather than
to the length of the piece, as in the standard edit distance. To accomodate
that, the edit distance can be generalized to assign a cost to such stretches
by any desired function of the stretch length. Formally, we define a gap in
an alignment to be any maximal (that is, terminated in both ends by a char
different from _ or by the end of the string) stretch of _ characters in either
of the two strings. Let g(k) be the cost that we assign to a gap of length k.

A recursive description of the edit distance can in this case be given using
the following four values:

4

S(i, j) = cost of an optimal alignment for X[1..i] and Y [1..j]
of type a) or b)

D(i, j) = cost of an optimal alignment for X[1..i] and Y [1..j]
of type c)

I(i, j) = cost of an optimal alignment for X[1..i] and Y [1..j]
of type d)

T (i, j) = cost of an optimal alignment for X[1..i] and Y [1..j]
of any type

These values fulfill the interdependent recursions below. The recursion for
T is:

T (i, j) =

0 if i, j = 0
g(i) if i > 0 and j = 0
g(j) if i = 0 and j > 0
min{S(i, j), D(i, j), I(i, j)} if i, j > 0

Here, correctness of the first and the last case is fairly obvious. For correct-
ness of the second case, note that for empty X, the only alignment possible
by the definition of alignments is the one shown below, which has cost g(j).

x1 x2 xj

_ _ _

A similar argument applies to the third case.

The recursion for S is

S(i, j) = T (i− 1, j − 1) + δ(i, j) if i, j > 0,

correctness of which is easily argued by removing the last column of an
optimal alignment of type a) or b) and then running the usual “optimal
subproblems” type argument (see LCS-notes for the written out argumen-
tation for lcs(i, j)).

The recursion for D is

D(i, j) =

g(i) if i > 0 and j = 0
min{min1≤k≤i−1{S(i− k, j) + g(k)},

min1≤k≤i{I(i− k, j) + g(k)}} if i, j > 0

The argument for correctness of the first case is similar to that for the second
case of the recursion for T (note that the single allowed alignment really is

5

of type c), as required for D). For correctness of the last case, consider an
optimal alignment of type c). It ends in a gap for Y of some length k, where
1 ≤ k (to be type c)) and k ≤ i (the gap is opposite k characters of X, by the
definition of alignments). The gap is preceeded by the last character of Y ,
and opposite that gap are the last k characters of X. This is illustrated
below, where t = i− k + 1.

.... ? xt xi

.... yj _ _

The position ? may be the i − k’th character of X or it may be _. In
the former case, which can only happen for k ≤ i − 1 (or there will be no
characters ofX left outside the gap area), the part of the alignment up to this
position is a type a) or b) alignment of X[1..(i−k)] and Y [1..j]. In the latter
case, the part of the alignment up to this position is a type d) alignment
of X[1..(i − k)] and Y [1..j]. We do not know k, but we try all possibilities
and take minimums. Correctness of this case now follows by an “optimal
subproblems” type argument (see the notes for Hirschberg’s algorithm for
a written out version of a similar argumentation for Hirschberg’s recursion
formula).

A symmetric argument proves correctness of the following recursion for I:

I(i, j) =

g(j) if i = 0 and j > 0
min{min1≤k≤i−1{S(i− k, j) + g(k)},

min1≤k≤i{D(i− k, j) + g(k)}} if i, j > 0

The dynamic programming solution will fill out the four tables for T , S,
D, and I simultaneously, using the same traversal pattern for all tables (for
instance rows top-down, and each row left-to-right, as usual). Filling out
a table entry may take Θ(m + n) time, due to the minimization over k in
the last cases of the recursions for D and I. As the total table size is still
Θ(mn), the running time becomes Θ(mn(m + n)). As always, an actual
alignment can be found by backtracing.

For the restricted case of g(k) = ak + b (that is, g a linear1 function), a
better analysis can be made. This is still a generalization of the basic edit

1In biological settings, the word affine is often used here (which is equally correct in
terms of math terminology)

6

distance (which can be said to use g(k) = k), in a way relevant for DNA
sequence analysis where a larger b (gap opening cost) and smaller a (gap
extention cost) is often used. The better analysis is realizing that a type c)
alignment with gap length k ≥ 2 can be seen as an extension of a type c)
having gap length k − 1, hence an increase in cost of a. If k = 1, it is an
extension of a type a) or b) or d) alignment by a new gap of length one,
which has an increase in cost of a + b. These possibilities are illustrated
below:

.... xi-1 xi

.... _ _

.... ? xi

.... yj _

With the usual type of argument, the recursion for D becomes

D(i, j) =

g(i) if i > 0 and j = 0
min{D(i− 1, j) + a,

S(i− 1, j) + a+ b,
I(i− 1, j) + a+ b} if i, j > 0

A symmetric argument gives a symmetric (D and I, and i and j, switch
roles) recursion for I, while those for T and S are not changed. Due to the
removed minimization over k, the time is back to O(mn).

7

