
Department of Mathematics and Computer Science December 13, 2016
University of Southern Denmark RF

Dynamic Programming: Hirschberg’s Trick

“Hirschbergs trick” is a method for saving space in dynamic programming
algorithms, invented in 1975 by Daniel Hirschberg. We here illustrate it
using the standard dynamic programming algorithm for Longest Common
Subsequence (LCS) of two strings.

Longest Common Subsequence

A subsequence of a string X = x1x2x3 . . . xm is simply some of the characters
of X, taken in order. In other words, it is a string xt1xt2xt3 . . . xik where i < j
implies ti < tj . A common subsequence of two strings X = x1x2x3 . . . xm
and Y = y1y2y3 . . . yn of lengths m and n, respectively, is a string which is
a subsequence of both X and Y . Let LCS(X,Y ) be the length of a longest
common subsequence of X and Y (there may be many longest common
subsequences, but they all have the same length).

The value LCS(X,Y ) may be seen as a similarity measure between strings.
The problem has applications in bioinformatics, and forms the basis of
file comparison utility programs such as diff and methods for reconciling
changes between file versions in version control systems such as Git.

The classic dynamic programming algorithm is based on the following re-
cursion, where lcs(i, j) is shorthand for LCS(X[1..i], Y [1..j]) for 1 ≤ i ≤ m
and 1 ≤ j ≤ n:

lcs(i, j) =


0 if i = 0 or j = 0
lcs(i− 1, j − 1) + 1 if i, j > 0 and xi = yj
max{lcs(i− 1, j), lcs(i, j − 1)} if i, j > 0 and xi 6= yj

Let S be a longest common subsequence of X[1..i] and Y [1..j]. The first case
of the recursion is correct because at least one of the strings is empty, hence
S is empty. The second case is correct because we can assume that S has a



last character corresponding to both xi and yj , since any longest common
subsequence with last character corresponding to only one of these can be
converted to one corresponding to both (by changing the corresponding
character in one of the strings), whereas a common subsequence ending
in none of these cannot be longest, as it can be extended. Removing the
last character of S, the remainder of S will lie in both X[1..(i − 1)] and
Y [1..(j − 1)], and must be longest common subsequence there (else S itself
could be be extended, hence would not be longest). The third case is correct
because the last character of S cannot correspond to both xi and yj , since
these are different. Hence, S must lie in either X[1..(i− 1)] and Y [1..j], or
in X[1..i] and Y [1..(j − 1)]. As no common subsequence in either of these
two pairs of strings can be longer than S (else, S would no be a longest in
X[1..i] and Y [1..j]), the maximum gives exactly lcs(i, j).

From this recursive formula, the O(mn) size table of lcs(i, j) for 1 ≤ i ≤ m
and 1 ≤ j ≤ n can be filled in one of several ways

using O(1) time per table entry, hence O(mn) time in total. The value
LCS(X,Y ) is simply the last table entry lcs(m,n). To find this, it is enough
to store O(min{m,n}) table entries during the execution of the algorithm,
since only the last row (or column, or diagonal, depending on choice of table
fill order), is needed for finding the next row. Hence, the space usage for
finding the length of a longest common subsequence is O(min{m,n}).

For finding an actual longest common subsequence, the usual method is to
backtrack from the last table entry, moving one diagonal step backwards
in the third case (and outputting a last character of the longest common
subsequence), while moving one horizontal or vertical step backwards in the
second case (outputting no character). The backtracking stops when the

2



first case is met. However, this method requires the entire filled table to be
kept in order to choose between horizontal and vertical steps in case two,
since the backwards path taken is not known beforehand. Hence, with this
method, time as well as space usage of finding an actual longest common
subsequence is O(mn). Hirschberg’s trick is a method for reducing the space
to O(min{m,n}) while keeping the time at O(mn).

First note that the recursion above is based on scanning the strings X and Y
from left to right. An entirely symmetric argument based on scanning from
right to left gives the following recursion, where where lcs’(i, j) is shorthand
for LCS(X[i..m], Y [j..n]) for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

lcs’(i, j) =


0 if i = m or j = n
lcs’(i + 1, j + 1) + 1 if i < m, j < n and xi = yj
max{lcs’(i + 1, j), lcs’(i, j + 1)} if i < m, j < n and xi 6= yj

Using this method we can fill the table in the other direction, and the value
LCS(X,Y ) is the first table entry lcs’(m,n). Nothing new is achieved yet.

Hirschberg’s idea is to use divide and conquer on one of the strings. We
here explain it using divide and conquer on X. Look at a longest common
subsequence S for X and Y . Some characters (possibly none) of S corre-
spond to characters from X[1..bm/2c] and the rest correspond to characters
from X[bm/2c+ 1..m]. Let yk be the rightmost character in Y which via S
corresponds to a character in X[1..bm/2c] (if no characters of S correspond
to characters from X[1..bm/2c], let k be zero).

We claim that

LCS(X,Y ) = max
0≤l≤n

{lcs(bm/2c, l) + lcs’(bm/2c+ 1, l + 1)}

Clearly, by the definition of k a first part of S is a common subsequence
of X[1..bm/2c] and Y [1..k], and the remaining part of S is a common sub-

3



sequence of X[bm/2c + 1..m] and Y [k + 1..n]. This shows the left hand
side smaller than the right hand side. Conversely, for any l a common
subsequence of X[1..bm/2c] and Y [1..l] concatenated with a common sub-
sequence of X[bm/2c + 1..m] and Y [l + 1..n] is a common subsequence of
X and Y . This shows the left hand side larger than the right hand side.
Hence, the claim is proved.

This claim shows that to find an actual longest common subsequence of X
and Y , it suffices to: i) first find the value k′ of l which maximizes the
right-hand side, ii) then find a longest common subsequence of X[1..bm/2c]
and Y [1..k′] and a longest common subsequence of X[bm/2c + 1..m] and
Y [k′ + 1..n], and iii) finally concatenate them.

To perform i), we find lcs(bm/2c, l) for all 0 ≤ l ≤ n. This is the middle row
in the table for lcs(i, j). We also find lcs’(bm/2c+ 1, l + 1) for all 0 ≤ l ≤ n.
This is the middle row in the table for lcs’(i, j).

Both can be found in O(mn) time and O(n) space. Afterwards, k′ can be
found in a scan of the two rows in O(n) time.

To perform ii), we recurse on the instance X[1..bm/2c] and Y [1..k′], and
the instance X[bm/2c+ 1..m] and Y [k′+ 1..n]. The longest common subse-
quences returned by each call are contatenated to form the output. A base
case is when the length of the first string becomes one (which will be reached
eventually when repeatedly halving an integer length). This string is a single
char, and an actual longest common subsequence between it and any other
string is either empty or a single character, which can be determined by a
scan of the other string. Another base case is when the length of the second
string becomes zero, in which case the empth string is returned.

Performing iii) is straight-forward if the output is returned as a linked list
(since the length of the longest common subsequence is known before the

4



recursive steps, it is not hard to see that it is also easy to return the output
as an array).

We now analyse the time. In the recursion tree of the method, the local
work of the root node is the O(mn) during i), which is the area of the table
it needs to fill out. As is clear from the following figure, the combined area
of the tables of its children (and hence their combined work) is a factor of
two smaller.

This is the crux of the method. From this, it follows that the sum of the local
work across one level of the recursion tree is a factor of two smaller than
the sum of the local work across the previous higher level of the recursion
tree. As the local work of the root is O(mn), the combined work summed
over the entire recursion tree is bounded by

O(mn) ·
∞∑
i=0

(1/2)i = O(mn) · 2 = O(mn)

Below is an illustration of the table sizes for each level of the recursion. The
red area for each box depicts the total work on one level of the recursion
tree.

5



Additionally, there is scan work at the leaves of the recursion tree (the base
cases), but all scanning in the leaves take place on non-overlapping parts of
the string, hence in total this scan work is bounded by O(n + m).

The space usage is bounded by the recursion stack and the space usage of
the active node in the recursion tree. Since each node on the stack contains
two string indices for each of the two strings, this former is O(logm). The
latter is bounded by the space usage of the root, which is O(n). Since we
may choose either of the input strings to be X, this means a space usage
of min{n + logm,m + log n}, which can be seen to be O(min{m,n}) in the
very realistic case that max{logm, log n} ≤ min{m,n}

6


