
DM842

Computer Game Programming: AI

Lecture 5

Path Finding

Christian Kudahl

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. Heuristics

2. World Rerpresentations

3. Hierarchical Path�nding

2

Heuristics

Admissible (underestimating):

has the nice properties of optimality

more in�uence by cost-so-far

increases the runtime, gets close to Dijkstra

Inadmissible (overestimating)

less in�uence by cost-so-far

if overestimate by ε then path at most ε worse

in practice beliviability is more important than optimality

3

Common heuristics

Euclidean heuristic (straght line without obstacles, underestimating)
good in outdoor, bad in indoor

Octile distance

Cluster heuristic: group nodes together in clusters (eg, cliques)
representing some highly interconnected region.
Precompute lookup table with shortest path between all pairs of clusters.
If nodes in same cluster then Euclidean distance else lookup table. Good
for indoors. Knowledge vs Search Time

Problems: all nodes of a cluster will have the same heuristic. Maybe add
Euclidean heuristic in the cluster?

4

Visualization of the �ll

5

Dominance

If h2(n) ≥ h1(n) for all n (both admissible)
then h2 dominates h1 and is better for search.

Given any admissible heuristics ha, hb,

h(n) = max(ha(n), hb(n))

is also admissible and dominates ha, hb

6

Relaxed problems

Admissible heuristics can be derived from the exact

solution cost of a relaxed version of the problem

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1(n) gives the shortest solution

If the rules are relaxed so that a tile can move to any adjacent square,
then h2(n) gives the shortest solution

Key point: the optimal solution cost of a relaxed problem
is no greater than the optimal solution cost of the real problem

7

Outline

1. Heuristics

2. World Rerpresentations

3. Hierarchical Path�nding

9

World Representations

Division scheme: the way the game level is divided up into linked regions that
make the nodes and edges.
Properties of division schemes:

quantization/localization
from game world locations to graph nodes and viceversa

generation
how a continous space is split into regions
manual techniques: Dirichlet domain
algorithmic techniques: tile graphs, points of visibility, and navigation
meshes

validity
all points in two connected reagions must be reachable from each other.

10

Tile graphs

Division scheme:
Tile-based levels split world into regular square (or exagonal) regions.
(in 3D, for outdoor games graphs based on height and terrain data.)
Nodes represent tiles, connections with 8 neighboring tiles

Quantization (and Localization)
Each point is mapped in a tile by:� �
tileX = floor(x / tileSize)

tileZ = floor(z / tileSize)� �
Generation:
automatic at run time, no need to store
separately. Allow blocked tiles.

Validity:
partial bloackage could cause problems.

Remarks:
it may end up with large number of tiles
paths may look blocky and irregular

11

Dirichlet Tassellation

Way of dividing space into a number of regions
(aka Vornoi diagram)
A set of points (called seeds or sites) is speci�ed
beforehand.
For each seed there will be a corresponding region
consisting of all points closer to that seed than to any
other.

connecting circumcircles Vornoi decomposition

12

Division scheme:
Seeds (characteristic points) usually speci�ed by a level designer as part of
the level data
connections between bordering domains

Regions can be also left to de�ne to
the designer or cone representation
and point of view.

Quantization

�nd closest seed: use some kind of spatial partitioning data structure (ex
kd-trees, as quad-tree, octree, binary space partition, or multi-resolution map)
Validity

May lead to invalid paths → Good seed placement makes it work in practice.
Leave Obstacle and Wall Avoidance on.
Advantage: Moving the seeds, the path�nding can be changed without
changing the level itself.

13

Points of Visibility

In�ection points: points on the path where the direction changes, may not be
feasible for the character due to collision. Need to be moved.

Division scheme:
in�ection points: Look at level
geometry (maybe costly) or generate
specially.
connection is made if the ray doesn't
collide with any other geometry

Quantization:
Points of visibility are usually taken to
represent the centers of Dirichlet
domains

14

Navigation Meshes

Navmesh: Designer speci�es the way the level is connected and the regions it
has by de�ning the graphical structure made up of polygons connected to
other polygons.

Division scheme:
�oor polygons are nodes
connections if polygons share an edge

Quantization and Localization:
Coherence refers to the fact that, if we
know which location a character was in at
the previous frame, it is likely to be in the
same node or an immediate neighbor on
the next frame. Check �rst these nodes.
(note, polygons must be convex)

Validity:

Not always guaranteed

15

Alternative division scheme: polygon-as-node vs edge-as-node
nodes on the edges between polygons and connections across the face of each
polygon.

Nodes are sometimes allowed move on the edge. → expensive.

16

Other Issues

Cost maybe more than simple distance

Di�erent cost functions for di�erent characters (tactical path�nding)

Tile-based graphs tend to be erratic.
steering behaviours can take care of this.

17

Path smoothing

� �
def smoothPath(inputPath):

if len(inputPath) == 2: return inputPath

outputPath = [inputPath[0]]

We start at 2, because we assume two adjacent

nodes will pass the ray cast

inputIndex = 2

while inputIndex < len(inputPath)-1:

if not rayClear(outputPath[len(outputPath)-1],

inputPath[inputIndex]):

outputPath += inputPath[inputIndex-1]

inputIndex ++

outputPath += inputPath[len(inputPath)-1]

return outputPath� �
Note: output is a list of nodes that are in line of sight but among which we
may have no connection

18

Outline

1. Heuristics

2. World Rerpresentations

3. Hierarchical Path�nding

19

Hierarchical Path�nding

multi-level plan: plan an overview route �rst and then re�ne it as needed.

grouping locations together to form clusters.

edges between clusters that are connected

costs not trivial: heuristics: minimum distance,
maximin distance, average minimum distance

20

Hierarchical Path�nding

apply A∗ algorithm several times, starting at a high level of the hierarchy
and working down.

results at higher levels used to limit the work at lower levels.

end point is set at the end of the �rst move in the high-level plan.

no need to initially know the �ne detail of the end of the plan; we need
that only when we get closer

data structures: we need to convert nodes between di�erent levels of the
hierarchy.
increasing the level of a node, simply �nd which higher level node it is
mapped to.
decreasing the level of a node, one node might map to any number of
nodes at the next level down (localization). Choose representative point:
center of nodes mapped to same node (easy geometric preprocessing),
most connected node, etc.

21

Further speed-up:
Consider only nodes that are within the group that is part of the path, when
re�ning at lower levels.

22

Pathological cases

High-level path�nding �nds a route that can be a shortcut at a lower level.

Minimum
distance
heuristic
between rooms
Similar bad
examples exist
for the other
cost functions.

23

Instanced Geometry

For each instance of a building in the game, keep a record of its type
and which nodes in the main path�nding graph each exit is attached to.

Similarly, store a list of nodes in the main graph that should have
connections into each exit node in the building graph.

The instance graph acts as a translator. When asked for connections
from a node, it translates the requested node into a node value
understood by the building graph.

24

Summary

Best �rst search

Dijkstra

Greedy search

A∗ search

Optimality

Data structures

Heuristics

World representations

Tile graphs

Dirichelt tassellation

Points of visibility

Navigation meshes

Path smoothing

Hierarchical Path�nding

25

	Heuristics
	World Rerpresentations
	Hierarchical Pathfinding

