
Miscellanea



Blending

Colors at vertices etc. may have four channels.

RGBA = (red, green, blue, alpha)

What is the use of alpha?

Recall rasterization:

I Triangle vertices are projected to screen space.

I Pixels associated with triangle are found.

I Color value and z-value (depth) calculated for each (often using
interpolation on vertex values, as well as texture look-ups).

Fragment = pixel coordinate + calculated color value and z-value. (A
“potential” pixel in the final picture).



Blending

Colors at vertices etc. may have four channels.

RGBA = (red, green, blue, alpha)

What is the use of alpha?

Recall rasterization:

I Triangle vertices are projected to screen space.

I Pixels associated with triangle are found.

I Color value and z-value (depth) calculated for each (often using
interpolation on vertex values, as well as texture look-ups).

Fragment = pixel coordinate + calculated color value and z-value. (A
“potential” pixel in the final picture).



Blending

Colors at vertices etc. may have four channels.

RGBA = (red, green, blue, alpha)

What is the use of alpha?

Recall rasterization:

I Triangle vertices are projected to screen space.

I Pixels associated with triangle are found.

I Color value and z-value (depth) calculated for each (often using
interpolation on vertex values, as well as texture look-ups).

Fragment = pixel coordinate + calculated color value and z-value. (A
“potential” pixel in the final picture).



Blending

Colors at vertices etc. may have four channels.

RGBA = (red, green, blue, alpha)

What is the use of alpha?

Recall rasterization:

I Triangle vertices are projected to screen space.

I Pixels associated with triangle are found.

I Color value and z-value (depth) calculated for each (often using
interpolation on vertex values, as well as texture look-ups).

Fragment = pixel coordinate + calculated color value and z-value. (A
“potential” pixel in the final picture).



Blending

If passing various tests, e.g. the z-buffer test (more tests described later
today), a fragment then normally overwrites a pixel in the framebuffer
with its color value.

With blending, the color value of the pixel in the framebuffer instead
becomes the weighted average between its old value and the value of the
fragment.

The weights are based on (usually) the alpha values of the fragments
color.

Exactly how can be set in various way in OpenGL. Note: the averaging
takes place individually on each of the color channels (including
A-channel).



Blending

If passing various tests, e.g. the z-buffer test (more tests described later
today), a fragment then normally overwrites a pixel in the framebuffer
with its color value.

With blending, the color value of the pixel in the framebuffer instead
becomes the weighted average between its old value and the value of the
fragment.

The weights are based on (usually) the alpha values of the fragments
color.

Exactly how can be set in various way in OpenGL. Note: the averaging
takes place individually on each of the color channels (including
A-channel).



Blending

If passing various tests, e.g. the z-buffer test (more tests described later
today), a fragment then normally overwrites a pixel in the framebuffer
with its color value.

With blending, the color value of the pixel in the framebuffer instead
becomes the weighted average between its old value and the value of the
fragment.

The weights are based on (usually) the alpha values of the fragments
color.

Exactly how can be set in various way in OpenGL. Note: the averaging
takes place individually on each of the color channels (including
A-channel).



Blending

If passing various tests, e.g. the z-buffer test (more tests described later
today), a fragment then normally overwrites a pixel in the framebuffer
with its color value.

With blending, the color value of the pixel in the framebuffer instead
becomes the weighted average between its old value and the value of the
fragment.

The weights are based on (usually) the alpha values of the fragments
color.

Exactly how can be set in various way in OpenGL. Note: the averaging
takes place individually on each of the color channels (including
A-channel).



Blending Example

A typical example:

glEnable(GL BLEND);

glBlendFunction(GL SRC ALPHA, GL ONE MINUS SRC ALPHA);

DestX = Sourcealpha · SourceX + (1 − Sourcealpha) · DestX

for X = red, green, blue, alpha. Dest is colorbuffer pixel value, Source is
fragment value.

(All resulting channel values clamped to 1.0.)



Applications

Blending useful for e.g.:

I Translucent objects.

I Reflections.

I Morphing between textures.

I Billboarding.

(From OpenGL Programming Guide)



Applications

Blending useful for e.g.:

I Translucent objects.

I Reflections.

I Morphing between textures.

I Billboarding.

(From OpenGL Programming Guide)



Translucent Objects

Drawing translucent objects:

I First draw all opaque objects (no blending)

I Then draw all translucent objects, with blending enabled, in
back-to-front order wrt. the viewer [BSP trees may be used].



Fog

Automatic depth-based blending with fog-color.

Various depth-functions can be chosen:



Fog

Automatic depth-based blending with fog-color.

Various depth-functions can be chosen:



Billboards

A plain rectangle with a texture, simulating objects.

Useful for many things (especially when combined with translucent edges
via blending), e.g.:

I Clouds

I Trees

I Laser beams

I Smoke

I Explosions



Anti-Aliasing

OpenGL may be asked to anti-aliase using blending.

Another method is multisampling (several subpixels/rays per final pixel).



Anti-Aliasing

OpenGL may be asked to anti-aliase using blending.

Another method is multisampling (several subpixels/rays per final pixel).



Further OpenGL Buffers

I Accumulation buffer: combining place for color buffer contents
(entire pictures). Used for e.g. depth-of-field effects, motion blur
effects.

I Stencil buffer: used to restrict drawings to various areas (think
boolean bits per pixel - first set bits during a rendering to stencil
buffer, then use bits during rendering to color buffer (stencil test)).



Picking

Picking = select an object via mouse on screen.

How?!?

I Special render mode allows OpenGL to report on which rendered
objects intersected the frustrum.

I You can name (number) the objects rendered.

I For each, OpenGL can report the min and max z-value inside the
frustrum.

I Glu has command for setting up a pixels-wide frustrum.



Picking

Picking = select an object via mouse on screen.

How?!?

I Special render mode allows OpenGL to report on which rendered
objects intersected the frustrum.

I You can name (number) the objects rendered.

I For each, OpenGL can report the min and max z-value inside the
frustrum.

I Glu has command for setting up a pixels-wide frustrum.



Picking

Picking = select an object via mouse on screen.

How?!?

I Special render mode allows OpenGL to report on which rendered
objects intersected the frustrum.

I You can name (number) the objects rendered.

I For each, OpenGL can report the min and max z-value inside the
frustrum.

I Glu has command for setting up a pixels-wide frustrum.



Orientation

Vertex order gives orientation on triangles [CCW side and CW side].

Several neighboring triangles: consistent orientation.



Backface Culling

Save time by not shading backfacing triangles of closed objects.

Note: reflections are orientation reversing transformations:



Backface Culling

Save time by not shading backfacing triangles of closed objects.

Note: reflections are orientation reversing transformations:



Occlusion culling

Save time by not rendering objects occluded by others.

OpenGL can test-render an object, to see if any pixels in framebuffer was
changed. That object can be a simple bounding box of a complicated
model. Only render model if test returned true.

Other occlusion culling methods work by data structures (CPU side code)
keeping track of the scene (not curricumum).


