
pre-print

A Survey on Visualizations for Musical Data

R. Khulusi1, J. Kusnick1, C. Meinecke1, C. Gillmann1, J. Focht2 & S. Jänicke3

1Image and Signal Processing Group, Institute for Computer Science, Leipzig University, Leipzig, Germany
2Museum of Musical Instruments, Institute for Musicology, Leipzig University, Leipzig, Germany

3Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark

Abstract
Digital methods are increasingly applied to store, structure and analyze vast amounts of musical data. In this context, visual-
ization plays a crucial role, as it assists musicologists and non-expert users in data analysis and in gaining new knowledge.
This survey focuses on this unique link between musicology and visualization. We classify 129 related works according to the
visualized data types, and we analyze which visualization techniques were applied for certain research inquiries and to fulfill
specific tasks. Next to scientific references, we take commercial music software and public websites into account, that contribute
novel concepts of visualizing musicological data. We encounter different aspects of uncertainty as major problems when dealing
with musicological data and show how occurring inconsistencies are processed and visually communicated. Drawing from our
overview in the field, we identify open challenges for research on the interface of musicology and visualization to be tackled in
the future.

1. Introduction

Probably anyone has personal experiences with music, a medium
that has the unique feature to unite people. This socio-cultural
aspect of music is one of the main driving forces for music
research [Lam12]. Merriam-Webster defines musicology as "the
study of music as a branch of knowledge or field of research as
distinct from composition or performance" [MW18]. This encloses
all information related to music, e.g., sound patterns, scores, bio-
graphical information about artists, music genres and their depen-
dencies, etc. Similar to other subdomains of the humanities, in re-
cent years digital methods became increasingly important in mu-
sicology to store, structure and analyze vast amounts of digitally
available musicological data [Urb17]. To achieve these tasks, visu-
alization is a key element in this context, as it enables easier ac-
cess to the data and has the capability to highlight relationships
between structural elements of music [Lam12]. As the data to be
observed is manifold, visualization designs offered to analyze data
occur in many different forms. Our survey focuses on this unique
interface between musicology and visualization research. State-of-
the-art reports in related fields have already been conducted. Most
are domain-specific, such as the survey by Chan et al. [CQ07] re-
viewing visualizations of structural features of music. It focuses
on scores without discussing other entities related to musicology.
Casey et al. [CVG∗08] focus on the retrieval of content-based in-
formation and give an overview of existing projects and future chal-
lenges in this context. While they primarily discuss analysis, clas-
sification and retrieval methods, visualization solely plays a sec-
ondary role. However, the listed related applications will also be

covered by our survey. Related surveys situated in our field concern
visual text analysis methods in digital humanities [JFCS17], focus-
ing on textual data rather than musicological data. Cultural heritage
collections [WFS∗18], that explicitly excludes musical collections
and persons from the analysis, were found as well. Here, the clear
need for a survey considering visualizations for musicology arises.

In our survey, we shed light on applied visualization techniques
depending on the underlying data, i.e. musical entities—like musi-
cal instruments or musicians,—and relationships among those enti-
ties, and typical tasks (exploring, presenting, comparing, etc.) mu-
sicologists perform with the given visualizations. On the one hand,
it is complementary to related survey papers as it focuses on a dif-
ferent subdomain of the digital humanities. According to McNabb
et al.’s three-dimensional hierarchical classification of visualization
surveys [ML17], we will offer a new category in real-world & ap-
plications, thus, extending the current spectrum. On the other hand,
our STAR aims to introduce well-established visualization scenar-
ios for typical tasks in musicology to the visualization community.
Furthermore, in contrast to related publications from our commu-
nity, our STAR will include visualization techniques published in
musicology and digital humanities-related realms. In addition, we
will include online available visual analysis tools, primarily devel-
oped for users interested in music and commercial software dealing
with music.
Hence, our STAR provides a useful resource for future develop-
ments in visualization on the basis of musicological data. First, we
provide an overview of already existing techniques alongside sup-
ported typical user tasks. Second, we discuss arising challenges due
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to the nature of humanities data. These challenges are (1) vastness
in the size of the data emerging through the long history of musicol-
ogy, (2) inhomogeneity through fragmented data and an imbalanced
state of research in parts of musicology, (3) imprecision because of
undocumented but necessary information on historical entities, and
(4) incompleteness being a typical issue of cultural heritage data.

Third, we list future challenges and summarize unsolved prob-
lems as well as topics that have not yet been sufficiently addressed.

2. Scope

Means of visualization to communicate musical information can
be found in diverse realms. Our main priority when surveying re-
lated works was reflecting this diversity. Therefore, we decided to
take innovative, but for the visualization community rather atypi-
cal visualization design approaches into consideration. The result
is a collection of 129 works that distribute over different areas, as
shown in Table 1.
Consequently, our survey is situated on the intersection of visu-
alization and musicology. While visualization has rather seldomly
been applied in the realm of Musicology (4) like the Violin Society
of America, the most common source of included works fall under
the visualization of musicological data, published in diverse Visu-
alization (22) realms. In addition, the area of Human Computer In-
teraction (18) provides a suitable platform for presenting visual in-
terfaces to analyze digital audio and computer music. This includes
publications at global conferences like the Conference on Human
Factors in Computing Systems (CHI) and conferences specifically
directed towards applications in musicology like The International
Conference on New Interfaces for Musical Expression (NIME). In
Digital Humanities, an interdisciplinary community that brings to-
gether people with humanities and computer science backgrounds,
musicology is still considered a niche. Nevertheless, eight related
works have been collected and included in this survey. Visualiza-
tion plays an important role in Music Information Retrieval ap-
plications (18) to support the analysis of retrieved data sets. One
of the major journals that yield a large number of related works
are The Proceedings of the International Society for Music Infor-
mation Retrieval (ISMIR), which mainly focuses on the similar-
ity of music. Multimedia experts and practitioners apply visual-
izations for a diversity of analysis tasks on scores, performances,
and emotions of music (14). Notable realms are the ACM Interna-
tional Conference on Multimedia and IEEE Transactions on Mul-
timedia. Computer music research is cumulated under the tag Dig-
ital Audio (13)—with The International Computer Music Confer-
ence (ICMC) as a representative realm—, providing related works
using interactive visual exploration tools for sound analysis. The
group of Miscellaneous related works (9) includes further origins,
four related master and doctoral theses that we took into considera-
tion. In addition to scientific publications, we considered interactive
visualization approaches offered on Websites (15) or as Commer-
cial Software (8). This first category lists a series of visualizations
inviting website visitors to browse and to interact with musicolog-
ical data. The second category specifically includes game software
providing atypical, keyboardless means of interaction and visual
design approaches that support the playful acquisition of musical
knowledge—both aspects are valuable to be highlighted as they

Publication Realms Count
Visualization 22
Human Computer Interaction 18
Music Information Retrieval 18
Websites 15
Multimedia 14
Digital Audio 13
Digital Humanities 8
Commercial Software 8
Musicology 4
Miscellaneous 9
Total 129

Table 1: Publication realms of considered related works.

offer future prospects for visualization research and can be found
using search interfaces and typical keywords like "music" or "visu-
alization".

2.1. Considered Research Papers

To limit the large body of related works on the intersection of visu-
alization and musicology, a reference needed to fulfill two require-
ments in order to be considered for our survey.
First, the visualization needs to support a domain-specific task or
helps to investigate a research question concerning data related
to musicology. This includes visualizations for individual musical
works, entire musical collections, musicians and instruments. We
likewise considered visualizations on the basis of metadata as well
as musical contents. In contrast, we excluded works using visual
input to generate music [LL05, PIE∗11, MKSM16, Cho18, CW18]
from our survey. In interdisciplinary settings, the word visual-
ization is frequently used to refer to traditional charts. Although
meaningful information can be extracted from these representa-
tions, we excluded such works from our survey, e.g., Cano et al.’s
work [CKGB02] offering a scatterplot to analyze the similarity
among audios of musical works or Plewa [PK15] positioning the
numbers of songs on a regular grid.
Our second criterion is based on the information visualization
definitions given by Card [CMS99] and the UIUC DLI Glos-
sary [oI98]. Here, we only considered papers that provided
computer-supported, non-traditional visual representations of ab-
stract data. As musicologists also gain valuable insights using non-
interactive visualizations, interactivity was not a necessity. Thus,
we also included sophisticated static visual representations of mu-
sicological data, such as Heller’s heat map [Hel17] plots illustrating
wood thickness of instruments. At last, a variety of works includ-
ing visual representations of music can be found in proceedings
of other conferences like The International Conference on Tech-
nologies for Music Notation and Representation (TENOR). How-
ever, those works are often focused primarily on the notations part,
therefore we did not consider them in this survey.
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3. Methodology

Most of the surveyed visualizations have been designed to commu-
nicate features of musicological data to certain user groups. On the
one hand, tools are developed for domain experts with a musicol-
ogy background [MFH04, Hel17, KSKE17, KJKF19], on the other
hand, easy-to-understand visualizations are designed for the broad
public [Har07a,Dan14,Spo18]—including a category of papers ad-
dressing hearing impaired persons [YLL∗07,FF09]. In all cases, the
application domain specifies the tasks to be supported, and, con-
sequently, the complexity of the visualization design. Therefore,
we structure the related works on the basis of Munzner’s nested
model for the visualization design [Mun09], but focus on the level
of data—rather than task—abstraction that builds the bridge be-
tween domain situation and visual encoding. The classification of
the works, depending on the type of data for which the visualization
has been designed for, includes four main data categories: musical
works, musical collections, musicians and musical instruments.

We decided to split our first category on musical works into the
subcategories musical scores and musical sound to better structure
the large variety of proposed methods for this data type. Whereas
score is the composed blueprint to reproduce a musical piece, sound
is the actual interpretation, e.g., a recorded song or performed oper-
atic aria. These human interpretations are marked by variance from
the blueprint like not monotone and unvarying tempo or improvis-
ing and replacing noted features on the fly. As special case, ex-
amples of note sheets exists that contain so-called paranotations,
added notes on the blueprint to describe planned changes to the
notation in a non-standardized form. Such deviations lead to spe-
cial visualization challenges and approaches. While the first cate-
gory offers detailed views on music, diverse distant overviews for
musical collections—including large numbers of musical pieces—
have been designed. Depending on the actual user task, the musical
piece can be compared in regards to specific features or be trans-
formed to allow for easier browsing. The last two categories are
closely related to musicology that does not only focus on the result
of the musical process (notes and performances), but also on musi-
cians (composers, performers, instrument makers, ...)—related vi-

sualization techniques are surveyed in the musicians section 4.3—
or instruments that have been used (see Section 4.4). Due to the
difference of features related to these categories, the means of vi-
sualization offered to observe and to interact with the data vary.
For better guidance through the collection, we grouped the related
works of each data category dependent on the general use of the vi-
sualization. The classification according to data types is discussed
in Section 4.

Next to structuring the related works according to data char-
acteristics, we skimmed through the papers of the collection and
analyzed what abstract [BM13] and domain-specific visualization
tasks are supported. Considering the large amounts of works in
some categories, we divided them into related subtasks. We in-
cluded information about typical tasks for each data type within the
data classification. The survey is complemented with an overview
of how and if visualizations cater for communicating occurring un-
certainties (see Section 5). This includes issues arising due to the
vastness of musicological data sets, the imprecision of data fea-
tures, the incompleteness of data, and the inhomogeneity through-
out and beyond the collected data. Finally, we marked open chal-
lenges on the intersection of visualization and musicology reported
in Section 6.

3.1. Domain-related Terminology

As our survey puts the spotlight on musicology, a humanities re-
search domain having its own terminology, we briefly explain a
few terms that will repeatedly occur in the following sections.

• The pitch is quantified by a frequency, describing the physical
phenomenon of oscillation of sound waves. It gains a musical di-
mension through the relation to other frequencies in a complete
range of sounds. Thus it is the feature that defines the height po-
sition in a musical score notation. Examination of it is interest-
ing, especially for comparison between today’s and music of the
past, as the concert pitches of instruments have changed through-
out the centuries.

• A musical note is a symbolization of a musical sound encoding

Figure 1: Overview of all used visualization techniques for each class of data.
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pitch and duration of it. In order to define the position of a mu-
sical note in a score, we refer to scientific pitch notation which
is a method for the explicit description of a pitch using its note
name and octave number.

• The musical score is the notated version of a musical piece. It
consists of multiple notes, varying according to its system and
media, like written sheet music or digital MIDI. It encodes the
musical features for storage, exchange or replay. One example
of a classical sheet notation is visible in Figure 2 (top), where
the notes are complemented by additional information such as
tempo or repetition for its performance.

• The key of a musical piece is the root (tonic note) in which it
is composed. This note and its corresponding chords form the
tonality of the piece.

• The dynamic describes the variability of loudness within a mu-
sical piece.

• Timbre is the perceived sound quality of a sound arising from
the mixture of different frequencies by overlapping of the fun-
damental tone and partial tones. It describes the tone color of
individual instruments or voices even if they are equally tuned.

• Music is described by its features that can be divided into low
level features, physical attributes like pitch, tempo or loudness,
perceived high level features e.g. timbre and structural features
such as dynamics and repeating motifs.

4. Classification

Musicology as an application area for visualization is a domain that
requires user-centered design approaches [AMKP04] to lower bar-
riers and to enable intuitive interpretation and to foster engagement
with the visualized data for musicologists and non-expert users.
During our extended research, we encountered a large variety of
data types for which visualizations have been designed to support
various user tasks in a musical or musicological context. These data
types cluster the surveyed visualization techniques the best. Ta-
ble 2 gives an overview of the classification having musical works,
musical collections, musicians and instruments as main categories.
The references for each category are further subdivided depend-
ing on domain-specific tasks. Figure 1 provides an overview of the
visualization techniques used for communicating features of the
main data categories visually. Different visualization approaches
are grouped together under abstract names. For example, charts in-
clude a multitude of rather basic visualizations like scatterplots, bar
charts, pie charts, or boxplots. The group of piano roll views is de-
fined by the digital representation of a piano roll and plain score
sheets. Both holding all information a traditional and analog score
sheet offers, and were defined from us as special forms of timelines.
Also, the three-dimensional rendering group is an aggregation of
different principles. Next to the expected renderings like volume
and surface rendering, also renderings of avatars are included. The
miscellaneous group consists mainly of glyph visualizations that
are too abstract to be categorized into other groups or would lead
to groups of three elements or less. While charts are the only visu-
alization used for all four data types, they are rather seldomly used
in general. Especially noticeable is the high amount of map visual-
izations used for musical collections. As collections dealing with a
multitude of different songs that are to be put into an easily accessi-
ble way, this is not surprising. Often, the maps are used with a self-

Figure 2: The first notes of Ludwig van Beethoven’s "Für Elise"
in classical sheet notation (top) and Wattenberg’s Arc Diagram
Visualization of structural repetition for the whole piece (bot-
tom) [Wat02].

organizing approach (SOM) or clustering for positioning, result-
ing in the song’s proximity representing similarity. Musical works,
which reserve the major space of our survey, are visualized with
very different and special visualization means, including 16 mis-
cellaneous visualizations that appear too rarely to be grouped ex-
plicitly. A further anomaly is the piano roll view only being used for
musical pieces. As this being a digital adaptation of score sheets,
the high amount of musical pieces is less striking and the missing
other types are caused by this visualization approach being very
specialized for notes in a temporal context. Instruments are mainly
visualized by three-dimensional renderings. Mostly, available data
for this type is given as computed tomography data, predefining it
for these renderings. Metadata visualizations of instruments (charts
and heatmaps) are the exception. The musicians are represented in
different visualization strategies. A lot of works deal with network
visualization, calling for typical graphs, while temporal data like
living or working spans are compatible with timelines. With this
chart, we offer a quick overview of typical approaches used to vi-
sualize the different data types, indicating what to expect in the
next sections and which combinations may be of interest for future
visualization research in musicology.
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Data
Type

Category Use References

Overview
[SW97, WHF03, MC07, WBK09, CKS10, Gud11, MT11, Hal13,

CNP16]
Structure Analysis [Sap01, Wat01, Wat02, MFH04, BKH07, CQM09, MPZZ15, GC16]Musical

Scores
Instrument Performance Analysis

[SWK95, Son04,Har07a, Har07b,Fit08, Col09,Ubi11, TTT12, Rea13,
LYH14, WRR∗13, XAWI13, YE13, XTI14]
Single Performance Analysis: [SML∗16, Huy17, WZBKB17, LK18]
Structural Analysis: [DGW02, LG03, PGW03, SH05, Got06]

Performance Analysis
Feedback: [HWF02, Isa03, MW03, YLL∗07]
Manipulation: [Dix01, YGK∗07]

Emotion Analysis [CWJC08, FF09, Got96, HLZ04, HXF∗10, LL04, SY09, ZHJ∗10]

M
us

ic
al

W
or

ks

Musical
Sound

Similarity Analysis [Foo99]
General: [BCD04, CB09, CRV∗06, Lüb05, MLR06, NM02, PG06,
Sch08, SPKW06, TC00]
Genre: [CC18,KSPW06,McD18,MUNS05,PDW04,PRM02,RPM03,
THA04]

Explorative Analysis Mood: [APO16, GG05, HG13, HHKB06, vGVvdW04, VGV05]
Sound Features: [BF03, BFTC02, KPL06, LE07, LT07, PEP∗11,
MPM10, TC01, TEC01]
Popularity: [Don07, SWT08]

Listening Statistics Analysis [BB09, BSSB10, BW08, ZL17]M
us

ic
al

C
ol

le
ct

io
ns

Music Alignment [DPLM∗16, GAG∗15, OCF∗15]

Explorative Analysis [AWR∗07, Dan14, Doi17, Jän18, KJ16]

Social Network Analysis [AGC∗17, GD03, JF17, KJKF19, MWP12, YSB09]

M
us

ic
ia

ns

Similarity Analysis [CK04, Gib11, GZL05, JFS16, LA18, SKW05, Spo18, Vav17]

Structure Analysis
[BS09,dBLD∗17,EKK∗17,Hel17,Hop18,KBF∗16,KSKE17,Kus18,
Sch18]

Functioning Analysis [BGW08, BMSH13, MPLKT05, SEK∗16]

In
st

ru
m

en
ts

Table 2: Classification of visualization references by firstly their data type and secondly their main use.

In the following, we give a detailed overview of each data cat-
egory and the typical user tasks when dealing with such data. We
report on the necessity of designing visualizations for musicology,
and we likewise outline the relevance of dealing with such data and
applications for the visualization community.

4.1. Visualization of Musical Works

The majority of visualizations have been designed for musical
works that represent different products of music. Those appear ei-
ther in written form as Musical Scores that are composed manu-
als for musicians to reproduce the music, or in the form of pro-
duced Musical Sound, wearing the fingerprint of the performer
and showing (minor) discrepancies to the blueprint of musical
scores [DR06]. As the data of those products are different, we di-
vided the references on visualizations for musical works into those
two categories. Further, this section focuses on works that visualize
aspects of a single musical work, thus, providing a detailed view of
a single musical work. Visualizations made for entire collections of

musical works, which focus on other aspects and support other user
tasks, are discussed in Section 4.2.
The data formats for digital musical works are manifold. While
musicXML [G∗01] is a standard for sharing musical scores, mu-
sical sounds are stored in various audio file formats [DR06] like
MP3 or WAV. Both, musical sounds and musical scores can also
be stored as MIDI files. MIDI is a standardized format developed
for exchanging information of events and music data like pitch, ve-
locity (volume), vibrato, panning to the right or left of stereo, and
tempo [MID19] and encodes them into control signals for elec-
tronically instruments. MIDI files can be generated automatically
by an electrical instrument playing (where all information are en-
coded and saved) [Swi97] or composed digitally with the help of
(commercial) composing software [OTG19]. Thus, MIDI files dif-
fer from other files for storing musical information as they do not
contain records of sounds that are simply saved digitally and later
be played again. Instead, they save information as instructions that
are redirected to an electrical instrument and then used to "reinter-
pret" [Swi97], recreating an original sound. Hence, MIDI can store

accepted by COMPUTER GRAPHICS Forum (2/2020).



6 R. Khulusi, J. Kusnick, C. Meinecke, C. Gillmann, J. Focht & S. Jänicke / A Survey on Visualizations for Musical Data

Figure 3: Commercial software like Liquid Notes [OTG19] (left) can be used to help the user in composing music. The piano roll view (A)
enables an overview of the compositions. Instruments or sound pitches were encoded along the y-axis, position and length of notes were
drawn along the x-axis. Additional controllers adjust a single sound or the whole song. Ciuha et al. [CKS10] (right) visualize note sheets
and piano rolls. The color represents the different keys or the harmonic relations between tones using excerpts (from top to bottom) from
Pachelbel’s "Canon in D major" and Debussy’s "Clair de Lune".

both kinds of musical works, depending on how the file is generated
(recorded input and transformed back into a midi notation format,
or composed input). In some cases, the authors do not explicitly
report on the data format being used, but we can assume that the
MIDI file format was the most often used one.

4.1.1. Musical Scores

Throughout time, scores have been the main way of transferring,
documenting and teaching musical pieces [Ben19]. Figure 2 (top)
shows a part of the classical score representation of Beethoven’s
"Für Elise". The sheet includes notes for two parts that are played
simultaneously. Each part offers different information in a temporal
context [HB82,Ben19] like key (violin on top and bass on bottom),
beat (three-eighth time), dynamics (starting with pp—pianissimo—
for "very soft"), tempo (Poco moto meaning "little motion") and
a list of notes and breaks. With the information contained in the
music sheet and the knowledge of how to read it and how to play
an instrument, musicians are capable of re-interpreting a musical
piece. Although such a traditional score of a musical piece itself
is already a type of visualization [SW97], a variety of alternative
score representations, discussed in this section, exist.

Relevance for VIS. Musical scores are given in a data format
that is unique to be used as a basis for visualization. Musicology
has found its own principles to present scores effectively in a visual
form. It is used by a large community including musicologists and
non-expert users. Visualization research can further enhance those
representations by applying generic visual design and interaction
principles. Most of the visualizations are used to teach scores and
only a few case studies exist, which examines how visualization can
be used for teaching [YV15,RRJH18,FIB∗19]. Thus, visualization
researchers can learn strategies from the presented visualizations
on how to design in a way that the data is easily understood by the
observer.

Relevance for Musicology. The prior advantage of visualizing
scores is the ability to turn a complex traditional score notation into
an easily understandable visual form, thus, enabling less-skilled
users quick access to the data. In addition, musicologists profit from
visualizing scores because a reinterpretation of a musical piece al-
ways comprises a unique fingerprint of the corresponding musician.
Further engagement of visualization scholars could help to contrast
different interpretations of the same score or even adaptations of
such fingerprints left on the score notations through paranotations
(handwritten notes and instructions added to a note sheet).

We group the surveyed works according to three main user tasks.
First, visualizations are tailored to give an overview of the score.
Second, such representations can be enhanced exposing structural
score features. Third, scores are visualized to analyze instrument
performances.

Task: Score Overview. Giving an overview of the whole score
is useful for both, experts trying to analyze a musical piece and
less-skilled users that aim to comprehend music scores. Miller et
al. [MHK∗18] offer a pipeline for designing and visualizing music
notation overviews to assist in performing musicology tasks utiliz-
ing information visualization principles. To differentiate from the
classical score notation, typical scores are visualized in their tem-
poral context and are augmented through a combination of color,
shape, and placement or even complex glyphs. Some works en-
hance traditional score notations with other visuals, e.g., a colored
similarity matrix showing recurring passages and similarities be-
tween multiple tracks [WBK09], contextual information and an-
notations shown on demand in a fish-eye view [WHF03], or fur-
ther visualizations like box plots and heat maps [CNP16]. Typi-
cally, traditional score notations are transformed into a so-called
"piano roll notation" [CKS10, MT11, CNP16]. Each note’s pitch,
temporal placement, and length is mapped to y-axis position, x-
axis position, and length, respectively [CNP16]. Additionally, in-
formation may be encoded using color. Figure 3 (left) shows a typ-
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Figure 4: Visualizations of the note sheets of Johann Sebastian
Bach’s "Prelude in C Major" (top) and Scott Joplin’s "The Enter-
tainer" (bottom) [Hal13].

ical composition software [OTG19] using a plain implementation
of the piano roll, whereas Figure 3 (right) demonstrates the work of
Ciuha et al. [CKS10] that visualizes the musicological aspects of
consonance and dissonance in harmonies by color and saturation.
Instead of visualizing single notes, other approaches concentrate
on showing the distribution of pitches throughout different time
steps [MC07,Hal13]. While Mardirossian and Chew [MC07] depict
only the currently played keys and tones without further context in-
formation, Hall et al. [Hal13] provide an illustration of the whole
musical piece. Figure 4 shows the visualization for Johann Sebas-
tian Bach’s Prelude in C Major. The y-coordinate’s zero position is
a C Major pitch and higher pitches are placed on top in a color map
ranging from red to yellow and lower pitches on the bottom us-
ing colors ranging from blue to yellow. Longer played notes have
a greater width and simultaneous tones overlap. Score overviews
can further assist users in learning or teaching musical composi-
tions [SW97, Gud11]. Using score rather than performance data
facilitates improving the understanding of music and not directly
improving the performances. Therefore, different score views—for
a casual user normally not achievable through score notation— are
offered. This includes three-dimensional colored spheres indicating
low-level features of the scores [SW97]. Biophillia [Gud11] uses
physical processes in nature as a visual metaphor to teach music-
theoretical concepts like rhythm or dynamics with its artistic illus-
trations.

Figure 5: Comparison of Arc Diagrams for different musical
pieces [Wat01]. Each song generates a unique "shape" symbolizing
their repeated passages or themes.

Task: Structure Analysis. Besides the visualization of the pure
score, researchers provide deeper insight into the structure of mu-
sical pieces and highlight the underlying characteristic patterns,
repetitions, dynamics, keys, and harmonies. Therefore, a harmonic
analysis yields the harmonic structure of musical compositions,
and relationships between key regions can be extracted. While
a couple of works show static representations of a song [Sap01,
Wat01, Wat02, MFH04, CQM09, MPZZ15], others offer anima-
tions progressing throughout the song [BKH07,GC16]. Malandrino
et al. [MPZZ15] highlight structural features of musical compo-
sitions by mapping similar tonalities to similar colors. Chan et
al. [CQM09] communicate the structure of classical music works.
First, they illustrate the interaction among instruments, e.g., if they
are played dominantly or if they are played in an ensemble, in
a timeline. Second, played themes and their variations are illus-
trated as glyphs and the connections between them show repe-
titions. Sapp [Sap01] did not focus on the musical composition
itself but on the evaluation of key-finding algorithms applied to
the composition. This enables the user to inspect the (key) struc-
ture of a piece, as the different window-sizes and algorithmic out-
puts show the development of keys within a piece. Goss and Car-
son [GC16] visualize the leitmotivs, harmonies, phrases, and or-
chestration of Richard Wagner’s "Götterdämmerung" (Act II Scene
I) using an animated, four-segment polar area chart. The size of
a segment stands for the "energy and direction of the music us-
ing an expanding and contracting motion". Other approaches de-
termine the "shape" of a song [Wat01, Wat02, BKH07]. Watten-
berg [Wat01] used this term to question how music looks like, try-
ing to map relevant musical to visual features while focusing on
the repetition of structural elements [SS69]. Wattenberg offers arc
diagrams [Wat02] that group notes into sequences, recurring se-
quences are linked using widespread arcs. Figure 2 (bottom) shows
the visualization of Beethoven’s "Für Elise", and repeated sections
are seizable. Arc diagrams can be additionally applied for provid-
ing an overview of different works and compare them as shown in

Figure 6: An extract of Comp-I’s timeline (top) and structure view
(bottom), where each note is represented as a cylinder on the time-
line and the different subsequences of the song are drawn in a cir-
cular layout [MFH04].
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Figure 7: Music games utilizing visualization as enhancing enjoyment. Audiosurf [Fit08] (left), which visualize notes as obstacles in different
colors and Rock Band (right) [Har07b] where scores are represented as colored tiles.

Figure 5. Bergstrom et al. [BKH07] introduce Isochords to shape a
musical piece.

The structure is laid out on a two-dimensional, tri-angular iso-
metric coordinate grid. Distance in the grid indicates the conso-
nance and dissonance of tones, providing a quick look into the
structural features. The sight of structures in musical pieces can
support composing new or editing existing music. Using different
MIDI channels of an input file, which can be seen in the upper part
of Figure 6, Miyazaki et al. [MFH04] enhance a score structure
visualization by a three-dimensional circular representation using
cone-trees, representing subsequences of the musical piece and en-
coding sound features in a circular piano roll.

Task: Instrument Performance Analysis. One of the main
functions of scores is enabling instrumentalists to (re-)interpret mu-
sical pieces. Multiple visualizations support musicians in their per-
formances. This includes deepening the understanding of a mu-
sical piece on chord progression or composition details in actual
performances [SWK95, Ubi11, TTT12, WRR∗13, XAWI13, YE13,
LYH14, XTI14] using a combination of MIDI files, recorded au-
dios or videos of instrument performances. A theoretical exam-
ple is given by Chorlody [LYH14] that teaches about the rela-
tion between triad or chords using representations of the chro-
matic scale. More practically related tools offer extensions of a
real MIDI keyboard, showing chord progression and upcoming
notes [SWK95, Ubi11, TTT12, WRR∗13, XAWI13, YE13, XTI14].
Those are implemented as figures, appearing to walk over the
keys to be pressed [XTI14], a streamed second player accom-
panying the user [XAWI13], a rotated piano roll notation mov-
ing towards the player [WRR∗13, YE13], or visualizations con-
veying rhythm using colors to indicate how long a note has to
be played [TTT12]. In comparison to hinting of what should be
played, Smoliar et al. [SWK95] and the game Rocksmith [Ubi11]
offer means of validation by indicating the discrepancy of actu-
ally pressed keys to the composed notes. The former offers an
enhanced note sheet while the latter one uses a piano roll no-
tation. The gaming industry also brought forth games where the
player performs musical pieces. Most of those games let the player
immerse into the song through simplified piano roll visualiza-

tions [Son04,Har07a,Har07b,Ubi11,Rea13] or map score features
to game objects like space ships [Fit08,Col09]. Miller [Mil13] gave
insight into pedagogic aspects of different video games using visu-
alization to link the user’s desire to enjoy music and enhance the ex-
perience through gameplay elements. The data used by these games
are either pre-included music files [Son04,Har07a,Har07b,Rea13]
or local music files from the user [Fit08, Col09]. The visualiza-
tions offered by GuitarHero [Har07a], Rock Band [Har07b] (Fig-
ure 7 right), and Band Fuse [Rea13] are similar to those of Rock-
smith [Ubi11]. In these games, users are presented with a rotated pi-
ano roll notation, moving towards the screen. Single notes are mov-
ing towards the player and they have to be played at the time they
reach the viewport. SingStar [Son04] follows a similar paradigm
but uses a horizontal piano roll to show the notes that have to be
sung. In comparison to the above-mentioned works, other games
do not require users to play or sing a note as gameplay, but to in-
teract differently on the notes. Audiosurf [Fit08] (Figure 7 left) and
Beat Hazard [Col09] both offer to playback private audio files, from
which musical score features are analyzed and used to generate a
"race track".

4.1.2. Musical Sound

In contrast to musical scores, this section focuses on visualizing
sound data. Audio features extracted from music performances like
pitch, loudness, tempo, and timing are the basis for related visual-
izations. Some works use a combination of audio features and score
data [HWF02, Isa03]. For the works considered in this section,
score data plays a secondary role. Typically, the data is received
from audio files, recorded sound information via microphone or
MIDI interfaces—either real-time performed or pre-recorded. We
further consider music videos as a visual enhanced form of audio
art.

Relevance for VIS. Sound and visualization both aid at commu-
nicating information to humans. While visualization uses the hu-
man eye for transmitting expression, emotion or meaning, the ear is
the organ to experience auditory impressions. Both sensory organs
detect signals, and the transmitted information carries meaning or
emotion [Coo59]. For hearing impaired persons, related approaches
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Figure 8: The stacked timelines represent different instrument play-
ers’ performances. On the left different audience votes for prede-
fined modes are shown. These modes define if and how the instru-
mentalist shall perform and play notes [WZBKB17].

try to compensate for the loss of the hearing sensation (the loss of
the audio signal) and still allow the transfer of emotions and in-
formation of music through visual means [YLL∗07, FF09]. In this
context, visualization scholars can learn how to design barrier-free
representations of data—a research direction that is hitherto un-
touched in visualization.

Relevance for Musicology. The visualization of sound is rel-
evant for diverse purposes. While visualizing performances gives
valuable feedback in learning sessions [MW03, YLL∗07], charac-
teristic patterns in interpretation strategies of musicians get easily
explorable [PDW04,SH05]. In addition, visualizations enhance the
listening experience when offering interaction mechanism with the
sound [Dix01, LL04, YGK∗07]. A further benefit could be drawn
from adapting sequence alignment algorithms and visualizations to
support comparing different interpretations (sounds) of the same
score.

We group visualizations based on three main tasks for sound
data. We first give an overview of visualizations that support ana-
lyzing actual performances. While the traditional sheet notation of
scores exists for centuries, sound features that prepare the ground
for the visualizations discussed in this section are more experi-
mental and less standardized. This is due to the rather subjective
nature of sound perception. Many visualizations support analyz-
ing the mood of a song, which we summarize in the second para-
graph. The last paragraph is dedicated to differences and similari-
ties among different reproductions of music due to the subjective
nature of music perception but also due to the human-typical devi-
ation in performing music.

Task: Performance Analysis Performance data can be streamed
with a microphone or with cartridges, transformed and shown
on a display, while performing, to enable quick feedback loops.
The corresponding scores can be loaded as MIDI files. Appli-
cations supporting performance analysis serve different purposes.
First, (real-time) visualizations of (live) performances can help
in classifying and describing performance styles of musicians—
either generally [TED85, DGW02, LG03, SH05, Got06, SML∗16,

Huy17, WZBKB17, LK18] or explicitly through structural fea-
tures [PGW03, SH05]. Second, a teaching perspective gives feed-
back to users helping to improve their performances [HWF02,
Isa03, MW03, YLL∗07]. Third, performance sound can be edited
or manipulated [Dix01, YGK∗07].

Subtask: Single Performance Analysis. An in-depth analysis
of a single performance is subject to many related works. Sin-
gle performances can be analyzed in real-time using web ser-
vices [TED85, Huy17]. They offer means to record performances
and the corresponding sound is represented in piano roll notation.
Other works focus on different dynamic roles of instruments in
ensembles [SML∗16, WZBKB17]. Schedl et al. [SML∗16] show
the current position and involved instruments in an orchestra score
with additional structural elements of the performance. Wu et al.
[WZBKB17] visualize similar aspects, but for the distinct instru-
ments in jazz group’s performances as shown in Figure 8. It shows
a sample session where every live played instrument is symbolized
by a colored line. In addition, the audience members are enabled
to interact in the development or improvement of the performance
through a voting mechanism, adjusting if and what the musicians
play. Lupi and King [LK18] focus on the detailed nuances of King’s
playing characteristics, by visualizing the different hands and sec-
tions of the song.

Subtask: Structural Analysis. Many abstract performance views
enable structural analysis and comparison tasks. The former is
achieved by including a temporal dimension to the visualizations,
e.g., scatterplots map time progression to saturation [DGW02,
LG03], thereby illustrating the dynamic-tempo relation through-
out the performance’s progression. For visualizations that already
contain a temporal dimension, like the piano roll notation, spe-
cific structural features are highlighted to allow quick navigation
and overview of the distribution of such features [Got06]. Visual-
izations can also aid to compare playing characteristics of musi-
cians. Either concentrating on Jazz musicians [SH05] or classical
music pianists [PGW03], tendencies in improvisations during per-
formances are visualized using contour maps [SH05] or smoothed
data histograms [PGW03].

Subtask: Feedback. Giving feedback during live or recorded
performances helps performers in improving their skills. Next to
sound data, two works [HWF02, Isa03] make use of score in-
formation that is used (secondarily) to highlight discrepancies to
the actually played tones. This is especially important for eval-
uating the correctness of performances [HWF02]. Using Cher-
noff Faces [Che73], differences in pitch, flow, harmony, volume,
and keys can be shown. Alternatively, tools may help in deep-
ening the understanding of the user’s own performance, by visu-
alizing different structural features and similarities in the perfor-
mance [Isa03]. McLeod et al. [MW03] and Yang et al. [YLL∗07]
communicate low-level musical features like frequencies during
live performances using rather simple visualizations. While the for-
mer target beginners, the latter try to enable the group of hearing-
impaired people to learn to perform a musical instrument.

Subtask: Manipulation. Lastly, visualizations can support ma-
nipulating performance data. Such signal editing tasks are ei-
ther applied to live performance data [YGK∗07] or to audio
files [Dix01, YGK∗07]. For this purpose, an interactive graphical
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Figure 9: An excerpt of the Drumix tool, which shows the distribu-
tion of the drum patterns through a geographical metaphor based
on a SOM [YGK∗07]. The drums (snare vs. bass drum) are listed
in their temporal progression and can be rearranged.

representation of sound signals is offered, allowing a user to in-
teractively add or delete specific sound patterns. Both works use
drum and rhythm patterns for manipulation and represent the result
visually and acoustically. For example, Yoshii et al. [YGK∗07] vi-
sualize a self-organizing map that shows the distribution of the dif-
ferent drum patterns throughout the song (see Figure 9). For drum
manipulation, the tool offers three methods. The first method allows
for timbre manipulation by selecting different kinds of timbre. The
second method comes with a slider to change the volume for each
drum separately. Lastly, a graphical editor (Figure 9) allows the
user to rearrange the drum notes with click and drag interactions.

Task: Emotion Analysis of Sound. Fundamental for the per-
ceived sound of music is the resonating mood and the communi-
cated emotions [Coo59]. This is an important task, as music is per-
ceived by humans and can trigger different moods or emotions and
researchers are not only interested in why but also in how music can
achieve this. For instance, emotion can be transmitted with images
that appropriately reflect the mood of sound [HLZ04, CWJC08].
Sound snippets as well as images are tagged with related emo-
tion adjectives, and, during playback, images reflect the current
music mood [CWJC08]. Zhang et al. [ZHJ∗10] created a sys-
tem to derive the mood of music from its music video content
through image analysis. They align music videos with extracted
moods in a two-dimensional "affective space". Next to images
and videos, features of sound can be communicated turning the
"shape of music" into visual shapes transmitting the emotion of
music [Got96, LL04, SY09, HXF∗10]. While Sauer et al. [SY09]
use avatars, performing a Celtic dance (no arm movement), Goto
et al. [Got96] showed more abstract human-like dancers. Both map
tempo, beat position, or dynamic to movements, and users can se-
lect dance performance parts to create a whole choreography. A
screenshot of such a performance is shown in Figure 10. In con-
trast, Haro et al. [HXF∗10] do not show the shape of a song, but the
shape of a user’s musical taste. Therefore, around 60 audio features
are used to generate a (static) avatar, depicting tastes stereotypical
by mapping to background, head (eyes, mouth, hair, hat), suit or
instrument. Levin et al. [LL04] mainly focus on the question "If
we could see our speech, how might it look like?" They take in-
put from live performances (speech, sound, and song) and generate
real-time visualizations, inspecting features including pitch, spec-

Figure 10: Goto’s virtual dancers whose motions and positions
change to musical beats in real-time [Got96].

tral content, and autocorrelation data. The resulting visualizations,
which are described as "consensual hallucination", are presented in
an augmented reality environment, accessible for multiple users at
once.

To help hearing-impaired persons to develop a feeling for the
music Fourney et al. [FF09] offer a Music Animation Machine that
includes a piano roll view (see Figure 11 (left)) and a mood view
(see Figure 11 (right)). The latter one displays notes as circles and
encodes note length by circle size. When playing back sound, the
core of a circle moves to the next notes and disappears after some
time to communicate a feeling for the music e.g. speed or fading of
a tone.

Task: Sound Similarity Analysis. Repetitions are key elements
in musical compositions that are often found within the struc-
ture of sound. The development of methods to measure similari-
ties plays a central role in the field of music information retrieval
(MIR) [AP∗02]. Foote [Foo99] used a two-dimensional matrix vi-
sualization to show acoustic similarities in the same piece of music,
allowing to investigate structural and rhythmic characteristics. This
leads to repeated or modified themes being recognizable. The re-
sultant visual fingerprints of sound structure can be used to derive
knowledge on how similar other musical pieces are.

4.2. Visualization of Musical Collections

So far, we focused on the analysis of a single or very few music
pieces. Collections, in comparison, can be a whole music album, a
playlist, or the music archive. General issues when working with
large musical collections are classification, recognition, annotation
and the retrieval of music due to the increased required technology
capacity, large amounts of available music data, and acoustic in-
formation of sound that needs to be processed [CVG∗08,FLTZ11].
Visualizations of large music collections are based on diverse fea-
tures of musical data, and they are of interest for users who desire
new perspectives on their musical archive that are different from
plain file lists.
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Figure 11: The Music Animation Machine [FF09, MT11]. The piano roll visualization (left), where colored bars represent the notes and the
Part Motion (right), which uses colored circles showing the same information. The size of the circle encodes the note’s length.

Relevance for VIS. This section includes a large variety of visu-
alization approaches designed for non-expert users to support tasks
like navigating, exploring and editing music archives. The visual-
izations themselves are grounded on diverse features of musical
pieces, ranging from low-level sound features to descriptive meta-
data and crowdsourced information. Thus, visualization scholars
can learn how such a large palette of information can be processed,
and how the results can be visually represented in an intuitive way.

Relevance for Musicology. While the visualizations listed in
this section are typically designed to help non-expert users in nav-
igating through their music archives, the relevance for musicology
is limited. However, most systems are applicable also to music col-
lections of musicological interest. Further, there is a growing in-
terest in music alignment visualizations that help musicologists in
analyzing recurring sound patterns [Mül15].

Most of the surveyed methods support casual exploration tasks
for music collections. This includes that users get an overview of
the collection and can interact with it to perform typical tasks like
generating playlists or playing back music of interest. Further tasks
that are supported by visualizations are the analysis of listening
histories as well as exploring music alignments.

Task: Explorative Analysis. Though music pieces that com-
pile a collection are typically arranged hierarchically in a file sys-
tem, visualizations aid to give a more comprehensive overview
by allowing to see what is contained in a music collection con-
taining thousands of songs. Further, interactive visual interfaces
support a variety of tasks, ranging from user-driven playlist cre-
ation [vGVvdW04, VGV05, GG05, CRV∗06, CB09, PEP∗11] to
automatized music recommendation [BCD04, HHKB06, Don07,
SWT08, ZL17]. The musical pieces of a collection can be also ar-
ranged circularly based on their features. This can be done for a
song of interest where the other songs are mapped to a circular
layout based on audio features and their similarity to the target
song [HHKB06], or as visible tempo or genre distribution of the
collection in a music player [SPKW06], or as a mapping of artists
to the colors of a circular rainbow based on the audio features of
their songs [PG06]. Three-dimensional spaces are also used to ar-
range glyphs representing musical pieces [TC00,NM02,LT07]. For
example, Notess and Minimayeva [NM02] use a three-dimensional

coordinate system, where different media types are mapped to dif-
ferent shapes and the color represents the performer. However, mu-
sic pieces are typically arranged in a two-dimensional space rep-
resented as bubbles or small thumbnails (e.g., of cover or mu-
sician pictures)—the closer two songs are located to each other
in such views, the more similar they are. Such two-dimensional
arrangements of songs are often based on self-organizing maps
(SOM) [PRM02, PDW04, Lüb05, MLR06, Sch08] or multidimen-
sional scaling (MDS) [Don07,SWT08,PEP∗11]. Though some sys-
tems offer to overview and browse collections according to diverse
metadata, most approaches focus on a specific feature when gener-
ating the visualization—genre, mood, sound features and popular-
ity being the most frequent ones.

Subtask: Focusing on Genre. Genre is one of the most im-
portant metadata of music that we use to select the music we
like to listen to. Two works focus on communicating genres,
sub-genres and the dependencies among them with interactive
overviews [CC18, McD18]. Both platforms encourage casual vi-
sual exploration by allowing to playback audio samples for selected
genres. While Everynoise [McD18] provides a tag cloud to dis-

Figure 12: An excerpt of the super-genres Musicmap created
through a top-down approach [CC18].
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Figure 13: Islands of Music [PRM02], in which similar styles or
genres resemble islands.

play genres—clicking a genre generates a tag cloud of related mu-
sicians and music bands—, Musicmap [CC18] offers a zoomable
treemap (see Figure 12) for that purpose. Torrens et al. [THA04]
organize personal music libraries also by genre in treemaps, rect-
angle maps or circularly on a disc. Each song is represented with
a tiny diamond glyph and changes—through playlist editing—are
highlighted. Spatial arrangements of music items by genre are also
produced by SOMs [RPM03, MUNS05, KSPW06]. A representa-
tive example—the "Island of Music" [PRM02, PDW04]—uses a
geographical metaphor and organizes genres as islands like shown
in Figure 13. Knees et al. [KSPW06] extend the visual metaphor
with an auditive one. When moving through the genre map, audio
files closely positioned to the mouse cursor are played.

Subtask: Focusing on Mood. In contrast to the genre, other ap-
plications place songs having a similar mood closely [HHKB06,
HG13]. Andjelkovic et al. [APO16] formulate the need to include
mood similarity into content-based similarity classification. For
that, they offer an interactive user-interface to enter the names
of favorite performers that are used to project musicians in a la-
tent mood-space spanned by the mood categories sublimity, vital-
ity, and unease. Closely positioned musicians aid as recommen-
dations for the user. Van et al. [vGVvdW04, VGV05] also offer
a mood map that is laid out using a force-directed placement ap-
proach. “Magnets” representing mood categories are placed in the
two-dimensional space, and they attract related musicians. Musi-
cream [GG05] colors discs that symbolize musical pieces accord-
ing to mood. The user can interactively assemble playlists via drag
& drop. When doing so, songs with similar moods can be easier
stitched together.

Subtask: Focusing on Sound Features. Similarity of songs can
also be determined by low-level sound features like spectrum,
amplitude, metronome or beat points [TC01, TEC01, BFTC02,
LE07,PEP∗11]. Kolhoff et al. [KPL06] compute bloom-like shapes
whose form and color represent such features. In contrast, Muelder
et al. [MPM10] derive similarities by analyzing audio frequencies,
and the musical collection is displayed in a graph layout that ac-
centuates those similarities. Likewise, Leitich et al. [LT07] uses

Figure 14: PartyVote’s Interface, allowing attendances of social
events to vote democratically on the next selected songs [SWT08].

frequency characteristics of audio signals to project icons repre-
senting songs of a music library on a globe. A multifaceted view
for this is provided by the "Sonic Browser" that displays sound as
colored shapes in scatterplots, treemaps and graphs [BF03]. It maps
file size to the size of visual symbols, file types to symbol shape,
and sampling rates to color.

Subtask: Focusing on Popularity. Crowdsourced information can
also be used to feed an algorithm that arranges musical items
in a two-dimensional area. Donaldson [Don07] analyzes existing
playlists for that purpose. The more often two songs are listed
together, the more similar they are. After applying an MDS al-
gorithm, the music collection is explorable in 2D. Sprague et
al. [SWT08] present a democratic approach to select the next songs
to be played during a social event. The offered collection of songs
is mapped in a two-dimensional plane, and users’ votes are visually
highlighted. Figure 14 is an example of a music collection (on the
right) and voting area on the left side. The preferences form a con-
vex hull that includes all song candidates that can be played next.
A user’s vote influences the "weight" of the chosen song and all
nearby songs, thus, increasing the probability of a whole region of
similar songs of being selected.

Task: Analyzing Listening Statistics. Exploring the popularity
of songs is of interest for individuals who are curious about what
they have listened to in the past. Due to the time-related reference
of listening histories, timelines are the means of choice for visual-
ization. Byron and Wattenberg [BW08] visualize last.fm [Lim02]
listening histories with a stream graph. Each stream stands for a
musician, and the color of a stream indicates the personal popu-
larity of the musician as well as the initial onset time. A more de-
tailed view is provided by Baur and Butz [BB09], who represent
each song with a thumbnail icon and connect subsequently heard
songs in the form of a graph overlaying a timeline. Applicable for
listening histories spanning multiple years, Baur et al. [BSSB10]
generate heat maps juxtaposing daytime and years, thus, enabling
to discover patterns of how and when people listen to music – as
seen in Figure 15. Zhang et al. [ZL17] arrange the music history
of a user on a circular timeline. When selecting individual songs,
connections to related songs are shown for music recommendation
purposes.

accepted by COMPUTER GRAPHICS Forum (2/2020).



R. Khulusi, J. Kusnick, C. Meinecke, C. Gillmann, J. Focht & S. Jänicke / A Survey on Visualizations for Musical Data 13

Figure 15: The heatmap visualization of Baur et al. [BSSB10]
show patterns in listing history of users. Listening to the same song
and song sequences is highlighted through red lines.

Task: Music Alignment. While most previously discussed
works define similarity among songs based on features like genre,
mood or score features, different songs can also share same or sim-
ilar sound patterns [GAG∗15, OCF∗15, DPLM∗16]. Music align-
ment deals with detecting such patterns from scores and/or sound
data [DR06]. Gasser et al. [GAG∗15] offer a music alignment vi-
sualization for two musical pieces. The audio signals are juxta-
posed and related sound patterns are connected with lines. Fig-
ure 16 shows the implementation of Ono et al. [OCF∗15], using
a global and a local similarity graph to visualize all recurring inter-
and intra-song patterns. The visual design is comparable to Wat-
tenberg’s Arc Diagram [Wat02], using bent links connecting repe-
titions. A more strict definition of similarity is used by De Prisco et
al. [DPLM∗16], who focus on exact inter-song repetitions aiming
to discover plagiarized songs.

4.3. Visualization of Musicians

Besides musical pieces, musicology also focuses on the people as-
sociated with music. These are not only composers, instrumental-
ists and singers but also instrument makers, musical teachers or
music publishers, and further. A variety of biographical informa-
tion prepares the ground for related visualizations. This includes
person-describing information like name, life span or denomina-
tion, career knowledge like work span, practiced professions or
related institutions, and relational information, e.g., to other mu-
sicians or to music-related objects like musical pieces and instru-
ments. Biographical information, typically available in a text-based
form, is extracted from databases offering the present research
state in musicology [Foc19] (used by [JFS16, KJ16, JF17, Jän18,
KJKF19]), from digital library catalogues [AWR∗07, AGC∗17,
Doi17] or automatically derived from crowdsourced data [CK04,
GZL05, Vav17, Spo19].

Figure 16: Similarity Graph for Ono et al.’s [OCF∗15] musical
collection exploration tool. Songs are presented as rectangles and
similar music segments in different songs are connected.

Relevance for VIS. Biographical data takes different forms, for
which sophisticated visualization strategies already exist. Tempo-
ral data is visualized using timelines [BLB∗17], geographical data
is presented on maps [DMK05, ÇBAD17], relationships are laid
out with graphs [HB05, HSS15] and a large variety for visual-
izing textual data exist [KK14]. However, due to the historicity
of the topic, biographical data offered for musicians comprise di-
verse uncertain information—data can be incomplete, imprecise
and inhomogeneous—for which only a few sophisticated visualiza-
tion strategies on the basis of generic scenarios [MRO∗12,GHL15]
exist.
Musicology provides real-world data with diverse types of uncer-
tainty that can be used to develop comprehensive models to visu-
alizing uncertainties prevalent in different data types. Some case
studies report on how uncertainty can be dealt with and how un-
certain features can be visually communicated [MWP12, Jän18,
KJKF19]. We focus on this subject more detailed in Section 5.

Relevance for Musicology. Digital tools have only been rarely
applied or designed to support prosopographical research in mu-
sicology. Traditional prosopographical research typically focuses
on one of the famous composers and their main works in a
philological manner [JFS16]. A few works illustrate that vi-
sualizations, which communicate contents of large biographical
databases [Foc19], serve musicologists with intuitive views on
large person groups [KJ16], thus, focusing on an entire commu-
nity rather than individuals. The value of visualizations to engage
with new research questions in musicology is reported by Jänicke
et al. [JFS16, JF17]. Further, visualizations aid to make relations
among musicians that have not been considered visible for the first
time [KJKF19].

Visualizations can be grouped according to three major user
tasks discussed in this chapter. First, they enable multifaceted ex-
plorative visual analysis of biographical data in order to give an
overview that allows detecting trends, noticeable features, and pat-
terns. Second, visualizations aid at analyzing social networks of
musicians. Third, tools have been developed to enable visual anal-
yses of similarities among musicians.

Task: Explorative Analysis of Musicians. For hypothesis veri-
fication and generation, many visualizations follow Shneiderman’s
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Figure 17: Miller et al.’s network graph "Linked Jazz" [MWP12]
uses the musician images for quick recognition. The linkages be-
tween the nodes encoding relationships between the jazz musicians,
making it possible to derive further information about the social
network, the interaction between the artists and influences. The size
of images encodes the impact on the community through the num-
ber of relationships.

Information Seeking Mantra [Shn96] to provide an overview of
the biographical database at hand, and means of zooming and
filtering are to be used to analyze patterns of interest, to ex-
plore clusters of musicians having similar characteristics, and
to detect outliers. Typically, biographical information of various
types given in databases is used to generate an overview of the
data [AWR∗07, KJ16, Doi17, Jän18]. Khulusi et al. [KJ16] imple-
ment Shneiderman’s mantra with seven widgets to exploratively
analyze the data—two sunburst plots for musical and non-musical
professions of musicians, two tag clouds for their denominations
and divisions, a pie chart to contrast male and female musicians, a
timeline for activity times and a map to inspect places where mu-
sicians worked. Other works take fewer biographical data into ac-
count. Doi [Doi17] focuses on music bands and the locations of
their performances. Those are plotted on an interactive map that
supports analyzing the popularity of places. Continuum [AWR∗07]
illustrates the careers of musicians, that is, their creative works, on
a timeline. Means of filtering enable the detection of dependencies
among musicians of the database. Instead of using biographical in-
formation, Daniels [Dan14] gives an overview of a rap musicians
data set according to vocabulary size extracted from their lyrics on
a horizontal axis. To avoid occlusions, nodes are vertically.

Task: Social Network Analysis. Graph visualizations make re-
lations among persons of biographical databases visible, and they
intuitively reveal societal structures of communities. Biographical
databases like the BMLO [eJF15], the Linked Jazz database [Pat18]
or the Red Hot Jazz Archive [Ale02] provide relationship in-
formation among the musicians they include. Relations are of-
ten categorized—typical relations are familial, academic, or work-
related. Two projects focus on visualizing social networks of Jazz
musicians [GD03, MWP12]. While the Community Structure Jazz
project [GD03] provides a force-directed drawing of the network to
communicate the problems of racial segregation, the Linked Jazz
project [MWP12] places 20 Jazz musicians having the most regis-
tered relationships on an ellipsis and a barycenter drawing is ap-
plied to layout the entire network like shown in Figure 17. By

additionally scaling node sizes according to importance, influen-
tial Jazz musicians are quickly detectable. Laying out the social
network graph on a timeline allows detecting by what musicians
musicological knowledge has been transferred over time. Jänicke
et al. [JF17] and Yim and Bartram [YSB09] both use a horizon-
tal time axis and apply a one-dimensional force-directed placement
strategy to place nodes vertically. Next to individually listed rela-
tionships between musicians, social networks can further be de-
rived when institutions that employed musicians are taken into ac-
count [AGC∗17, KJKF19]. Like the latter two approaches, Ables
et al. [AGC∗17] combine timeline and graph in order to visualize
the careers of Venetian musicians in the late 17th century. Khulusi
et al. [KJKF19] place musicians depending on their life dates on
a timeline, and related musicians are connected with each other.
As musicians are grouped either by institutions they belonged to
or by musical professions they exercised in, potential relationships
among musicians can be hypothesized. Different zoom levels—
focusing on one, a few dozens, or all musicians in the filtered data
set—are provided to support this task.

Task: Musicians Similarity Analysis. As opposed to explor-
ing general characteristics or social networks of musicians, many
visualizations have been designed to support the analysis of sim-
ilarities among musicians. Most visual interfaces are tailored for
casual users, typically, to encourage intuitive exploration of music
recommendations [Gib11, Vav17, Spo18]. The similarity of musi-
cians is determined using crowdsourced information, e.g., Amazon
sale statistics [Vav17] or Spotify listing histories [Spo18]. All ap-
proaches follow the same concept. The user searches for a musi-
cian that is laid out alongside a fixed number (max. 20) of most
similar musicians in the form of a graph. While the Artist Ex-
plorer [Spo18] uses a tree for that purpose, LivePlasma [Vav17]
and Music-Map [Gib11] use a force-directed graph where edge
lengths, or distances, respectively, reflect similarity strengths be-
tween musicians. A seamless exploration of the similarity data is
enabled by refocusing on any shown musician that can be selected
via mouse click, and the playback of music samples can support
this task [Vav17]. The works by Cano and Koppenberger [CK04]

Figure 18: The Yahoo! metadata graph of Gleich et al. [GZL05].
Showing the similarity of artists (nodes) based on positive user rat-
ings (likes). The edges are alpha-blended to highlight local density
and connect each artist with their 20-nearest neighbors. The colors
represent different clusters based on the artist and the user rating
data.
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Figure 19: History of Rock showing connections between Rock
bands, their temporal developments and classification of their mu-
sic [LA18]. Selected are The Beatles.

and Gleich [GZL05] (see Figure 18) differ slightly from the previ-
ous ones as the graphs, which likewise reflect similarity with prox-
imity, give overviews of entire databases. Two works focus on ex-
posing similarity in the form of influences between musicians vi-
sually. Schedl et al. [SKW05] extract prototypical musicians per
genre and vaguely define influence among musicians based on the
number of co-occurrences in online texts. The result is shown using
a circular graph layout, that places similar musicians closely. The
project "History of Rock" [LA18] uses a manually curated data set
of 100 music songs assessed as the most important milestones of
rock history [The11]. Multiple coordinated views are offered for
exploring the corresponding musicians; Figure 19 shows visualiza-
tion when focusing on The Beatles. A force-directed graph illus-
trates Who influenced whom?-relations between musicians, their
songs are listed on a timeline to analyze trends and temporal de-
pendencies, and bar charts convey energy (from low to high) and
emotion (from sad to happy) levels. While the above-mentioned
approaches are merely designed for casual users and similarity is
based on the works of musicians, Jänicke et al. [JFS16] designed a
visual analytics system for musicologists to support the profiling of
musicians based on biographical characteristics (provided by the
musiXplora [Foc19]) like places of work, musical professions or
denominations of musicians. After choosing a musician of interest,
the similarity to all other musicians in the database is determined
based on eight similarity measures. The biographical details of the
chosen musician and the most similar ones can be comparatively
analyzed in a stream graph illustrating textual features, a social net-
work graph, and a map showing related places of work.

4.4. Visualization of Instruments

Besides musical works and associated musicians, the played in-
struments are in the focus of interest for musicologists, too. Mu-
sical instruments are part of previously mentioned visualizations

like Haro et al. [HXF∗10] who links avatars stereotypically to gen-
res and mood, or games such as Guitar Hero [Har07a] in which
parts of instruments are visualized. In this section, we focus on the
visualizations made for physical instruments and their digital rep-
resentations, e.g., in the form of three-dimensional object scans.

Relevance for VIS. While the work with instruments has a
century-old tradition in musicology, we observed that physical
instrument data is rarely used as a basis for visualization re-
search. In recent years, many works have been published in dif-
ferent domains having different challenges depending on the "ob-
jects" to be scanned, e.g., the industrial domain [DCCK∗14],
like metal joins [ZVMK17], the medical domain dealing with or-
ganic subjects such as small animals [LZM∗17], human infants’
heads [HPDCSC∗16] or muscle tissue [PM16] as well as inor-
ganic objects like nanoparticles [JAV12]. The specific characteris-
tic of musical instruments is that they are made of very different
materials provoking research questions that are hitherto untouched
by visualization research. A few related works, mostly published
in musicology, offer basic approaches in dealing with instrument
data [KBF∗16, Hel17, KSKE17, Kir19], thus, pioneering work in-
teresting for the visualization community. In addition, we list nu-
merous future challenges related to instrument data in Section 6.

Relevance for Musicology. From a musicologist’s point of
view, working with visual representations of instruments offers di-
verse opportunities. The work with digital representatives of orig-
inal instruments is non-destructive, and many users can have ac-
cess to a digitized instrument that can be documented and anno-
tated with metadata. Further, visualizations can help to explain the
functionality of instruments. Our collaboration partners from a mu-
sicology department mentioned that visualizations illustrating con-
cepts of instruments, their function (like sound generation), their
cultural contexts or provenance research (which deals with inspect-
ing the origin of instruments) are missing. Engagement of visual-
ization scholars in musicology is desired and provides new research
challenges as outlined in Section 6.
We divide related works into two groups of tasks. Firstly, visual-
izations aid at supporting to analyze structural features and special
material properties of instruments. Secondly, visualizations have
been designed to communicate how musical instruments function
and how sound is generated.

Task: Instrument Structure Analysis. Three-dimensional vi-
sual representations of musical instruments are frequently used to
communicate structural features. Especially, if instruments are very
old or if they are unique, a digital copy enables an explorative
analysis of the instrument’s construction or manufacturing with-
out harming the original. Different measurement and imaging tech-
niques are applied to digitize musical instruments. While laser or
X-ray scanners [Hel17] and computed models based on photos of
instruments [KSKE17] are rarely used, most frequently, computed
tomography (CT) scans of musical instruments are prepared [BS09,
dBLD∗17, Hop18, Kus18, Sch18]. As a non-destructive method,
CT generates three-dimensional data sets revealing inner struc-
tures of musical instruments as diverse material properties result
in diverse measured density values [KBF∗16, Pla19]. Strategies
how to deal with very large data sets are discussed by Eberhorn
et al. [EKK∗17]. A representative example, a volume rendering
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Figure 20: A colored three-dimensional visualization of a vio-
lin scanned by computed tomography. The color transfer function
highlights glued areas (bottom) [Hop18].

of a violin from the Violin Forensic project [Hop18], is shown
in Figure 20. In this example, the transfer function is defined to
highlight glued parts of the instrument in white to highlight pre-
viously repaired parts that may affect the value and sound of the
instrument. A typical task for documentation and conservation pur-
poses is analyzing the thickness of musical instruments, for which
heat maps, encoding thickness values with colors, are the means of
choice [BS09, dBLD∗17, Hel17]. Figure 21 shows a wood thick-
ness heat map of a violin tracked by laser scans. Such representa-
tions are used in musicology to compare and to categorize different
instruments of the same type, and they can even help to determine
the instrument maker [Hel17]. Heat maps can also be applied to vi-
sualize long-term influences on instruments due to storage and ag-
ing processes [KSKE17]. Using finite element simulations, the ob-
server can inspect the estimated deformation throughout the years.
Figure 22 shows expected long-term structural deformations due to
humidity changes in red and blue colors. Such views help conserva-
tors in handling and storing musical instruments accordingly. While

Figure 21: Wood thicknesses distribution of a top plate from an
asymmetric violin (top) in a heat map-like two-dimensional visual-
ization [Hel17].

Figure 22: Konopka et al. examine long-term deformations of
wooden instruments by experimenting with real instruments and a
computed simulation [KSKE17]. The image shows the simulation
results of a replicate of a clavichord in three states, where the heat
map-like color scale indicates the level of deformation.

the former visualization approaches serve musicologists with three-
dimensional digital copies of instruments to support research tasks
in musicology, Kusnick [Kus18] and Schott [Sch18] created a sys-
tem that allows museum visitors to playfully observe musical in-
struments in augmented and virtual reality environments. Figure 23
shows how a tablet device enables museum visitors in getting a
non-destructive, new perspective on a historical instrument—not
only from the outside as when the instrument is exhibited in a case
but also from the inside. The advantages of such immersive ana-
lytics tools are manifold, they can support pedagogical, conserva-
tional as well as documentation tasks, and, perspectively, they can
also support organologists and instrument makers in understanding
the sound generation of the instrument.

Task: Instrument Functioning Analysis. Communicating how
musical instruments operate is a mandatory task in musicology.
Pioneering work in this regard has been done by Askenfeld and
Jansson [AJ91] who illustrated the physical effects of the hu-
man touch on strings and hammers of pianos during sound gen-
eration. Though presenting such results in non-interactive charts
is sufficient for documentation purposes, sophisticated visualiza-
tion and interaction techniques ease understanding how instru-

Figure 23: Extract of Kusnick’s Masterthesis [Kus18] showing a
volume rendering of a hurdy-gurdy in an augmented reality context.
The printed marker on the table is detected by the tablet’s camera
as a reference point for the placement of the virtual object.
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Figure 24: Berthaut el al.’s "Rouages" visualize effects and their
interplay of different buttons and controller from digital music in-
struments and virtual extensions [BMSH13]. The controller set-
tings are symbolized with different three-dimensional shapes.

ments function and ease the access to such information with ap-
pealing representations. Two works offer to view and interact with
digital instruments in Augmented and Virtual Reality environ-
ments [MPLKT05,SEK∗16]. With gesture capturing, virtually rep-
resented, three-dimensional instruments can be played,and the user
can interact with color-coded rectangles, each encoding a differ-
ent, playable sound spectrum. Further, two approaches commu-
nicate the dynamics of instruments [BGW08, BMSH13]. Bouë-
nard et al. [BGW08] study the real membrane of a drum in de-
tail to generate dynamic and kinematic motion data through mo-
tion capturing. They display the trajectories of the drum sticks,
which allows to analyze special hitting techniques of a player.
Berthaut et al. [BMSH13] record actions when playing an instru-
ment through sensors and generate virtual animations of three-
dimensional shapes. Figure 24 communicates the functionality of
a synthesizer. Depending on the pressed button or regulated knobs,
the animation on the display below the controllers shows move-
ments of represented mechanical parts and how they interact to
generate a sound.

5. Dealing with Musicological Data

The long history of musicology yields large data sets that com-
prise a diversity of inconsistencies. We skimmed through the paper
collection and investigated how researchers deal with those incon-
sistencies and how and if the proposed interfaces reflect them vi-
sually. Additionally, we reviewed if and to what degree vastness of
data yields challenges to accurately design a data visualization. As
a result, we observed different forms of uncertainty [Mch19].

5.1. Vastness

The vastness of a data set refers to the size that leads to prob-
lems in visual representation, e.g., visual clutter. Although musi-
cal collections can be rather small compared to other areas of vi-
sualization, vastness still becomes a problem due to musicolog-
ical metadata that includes different types of entities. So, trans-
forming the metadata of musical collections and prosopographic
data sets into intuitive visualizations becomes a problem. Typi-
cally, multiple views [WBWK00] are used for filtering purposes
to reduce the number of data items to be visualized, for exam-
ple, when browsing biographical characteristics of around 30,000
musicians [KJ16]. In order to visually highlight a subset of rec-
ommendations out of millions of musical pieces, Donaldson et
al. [Don07] offer basic means of filtering and apply a liquid brows-
ing technique [WB04] to get a hand on occluding nodes repre-
senting recommended audios. Other visualization approaches are
not reflecting vastness as they consider its effect as negligible. Ev-
erynoise [McD18] arranges all available 2,635 music genre tags on
the screen and offer scrolling functionality for browsing purposes.
As the tags are arranged according to the similarity of subgenres,
"Serendipitous Browsing" [Mas11] supports the task of finding re-
lated genres. Commercial software for emulating songs, e.g., Au-
diosurf, Rocksmith or GuitarHero [Har07a, Fit08, Ubi11], solely
show a short sequence of notes in a time-dependent frame. Hi-
raga et al. [HWF02] offer a one-dimensional fisheye focus+context
view to inspect the entire score sheet of a composition on a sin-
gle line having a fixed width. The vastness of data items is cru-
cial when graphs are the means of choice to support related user
tasks. Jänicke and Focht [JF17] propose a semantic graph cluster-
ing strategy [dRdSP∗10] to condense the number of nodes to be
displayed within a social network graph of musicians—laid out by
traditional force-directed placement—without harming the user’s
capabilities to investigate the intended research questions. In con-
trast, Ono et al. [OCF∗15] opt for a visual clustering by applying
edge bundling and a focus+context metaphor to investigate the re-
lations between audios in a similarity graph. However, many works
do not cater for occlusions in graphs at all, taking occlusions among
labels [CRV∗06,YSB09] or edges [GD03,CK04,MWP12] harming
the readability of the graph into account.

5.2. Imprecision

Imprecise data features are manifold in musicological applications.
Typically, audio signals are perturbed with noise, and it is unclear
whether the measured noise relates to "deliberate expressive strate-
gies, motor noise or imprecision of the performer, or even measure-
ment errors" [LG03]. Though different strategies to handle noise
exist [TEC01, HHKB06, SY09], none of the surveyed works com-
municates the influence of noise on a similarity analysis visually.
Pampalk et al. [PDW04] leave the noise handling to the user who
tweaks a neighborhood radius that smooths the spatial mapping of
the musical collection. Next to auditive imprecision, musicologi-
cal metadata like datings or geographical information is inaccurate.
In historical data sets, this typically relates to the limited informa-
tion available for a subject of interest. In MusikerProfiling [JFS16],
imprecise musicians’ lifetime data that take different forms are vi-
sually encoded as can be seen in Figure 25. Khulusi uses a similar
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Figure 25: Visual encodings of imprecise datings [JFS16]: Small
horizontal lines� are used for precise datings, circles l for around
datings, triangles s for before datings, and upside down triangles
t for after datings.

visual metaphor when displaying the lifetime of a musician in the
form of a bar [KJKF19].
Concerning the imprecision of time, genres are also ambiguous en-
tities of music history [SPKW06]. Crauwels [CC18] highlights that
a music genre does not suddenly emerge "as a shocking revolution
without any trace or evolution in the past." Consequently, a pre-
cise mapping on a timeline is not possible. In his Musicmap he re-
lies on the year two or more different artists published work in the
same genre as a genre’s starting point, neglecting the mentioned
trace in the past. As genres are hierarchically arranged, the mean
year is used when joining sub-genres with different years of origin.
Hilliges et al. [HHKB06] replace a traditional genre clustering by
emotional genres after comparing the emotional qualities of the au-
dios, to encounter the ambiguity of the genre names.
As opposed to communicating the imprecision of time, the geospa-
tial inaccuracy that is manifested in different levels of granular-
ity when assigning places to musical entities has been rarely ad-
dressed in related works. The current procedure is representing
each geographical entity (e.g., city, region, country) as a location
on the map [Foc19]. When generating CT scans of instruments,
noise artifacts occur due to different characteristics of materials an
instrument is composed of. Though such inconsistencies are men-
tioned [Kus18], appropriate solutions to overcome those do not ex-
ist. For streaming purposes, CT scans need to be downsampled—
thus, an intended imprecision due to the loss of information—to
enable fluent interaction with the instruments’ three-dimensional
models [EKK∗17, Kus18].

5.3. Incompleteness

Referring to a data set with entities having different features, in-
completeness refers to the percentage of missing feature entries.
For these entries, it is known that the values actually exist, but it is
not given in the data set [Mch19]. For a note sheet, this might be
a corrupted, thus, unreadable note line or a missing page—typical

issues when dealing with historical material. Consequently, Opti-
cal Musical Recognition (OMR) software induce errors [Bul08].
Existing visual representations of note sheets [Wat02, Hal13] do
not account for this issue. When developing visualizations [JFS16,
KJKF19] for the musiXplora [Foc19], the activity time of a mu-
sician was defined by the beginning of a musician’s career and
the musician’s date of death. For around 30,000 musicians in the
database, approximately 10% of the former date and 30% of the
latter date are missing. Different strategies were applied to approx-
imate the time range in such cases, typically, by taking other tem-
poral metadata such as the date of birth or the last mentioning
of a musician into account. By not displaying the marker for the
beginning of the musician’s career [JFS16], this approximation is
indirectly communicated to the observer. If no temporal informa-
tion was given, the musician is disregarded from the visualization.
Timages [Jän18] arranges the portraits of musicians in the musiX-
plora on a timeline to communicate their historical influence. Miss-
ing portraits are visually expressed by a dummy image instead.
The Linked Jazz project [MWP12] involves another kind of in-
completeness. Personal relationships between jazz musicians are
extracted from interview transcripts that are not completely pro-
cessed by now. Music learning software, e.g. Rocksmith [Ubi11],
offer different levels of difficulty. Training with low difficulty, a
certain number of notes are excluded, thus, benefits are drawn from
drafted incomplete data. Due to the different physical processes
during a CT scan of a musical instrument consisting of manifold
materials, aberrations in the resulting data sets and images are un-
avoidable [EKK∗17, Kus18]. Especially, radiation artifacts lead to
irretrievably lost holes in the three-dimensional models.

5.4. Inhomogeneity

As opposed to the incompleteness of a data set that can be mea-
sured as the actual number of missing information of data items
in a given data set is known, the inhomogeneity of a data set can-
not be quantified, as it depends on the state of research undertaken
on the topic addressed in the data set [Mch19]. Data sets in mu-
sicology are partly built on qualitative research [Foc19], thus, the
knowledge on single cultural heritage objects or individuals is un-
even. Next to relevant data items unknown to the creator of a data
set, undocumented or overseen attributes lead to a distorted repre-
sentation of reality. MusikerProfiling [JFS16], which operates on a
biographical database of musicians, deals with inconsistencies due
to inhomogeneity. As of the late 19th century, musicology focuses
primarily on fifty musicians and their main works in a traditional
philological manner. Next to adjusting the popularity weight in the
visual analytics profiling process, the domain expert can reduce the
weight of relationship similarity, a value strongly affected by the in-
homogeneous state of research in musicology. This way, the musi-
cologist is enabled to throw the spotlight on less popular musicians.
Furthermore, crowdsourcing projects suffer from inhomogeneity.
Music-Map [Gib11] gives an overview of the proximity of artists
in dependency of casual users who list their favorites that will be
placed closer to each other in the global overview taking all crowd-
sourced information into account. As crowdsourcing projects are
usually biased [Kos09]—as they are fed by a specific community—
, the spatial distribution of artists is consequently inhomogeneous.
A special form of inhomogeneity is the non-standardized terminol-
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ogy in musicology due to the century-long history of music. For ex-
ample, a comprehensive and scalable classification of instruments
and instrument classes does not exist. To resolve occurring ambi-
guities a mapping between different sources is needed. In the best
case, this is offered with high confidence through a domain expert.
Otherwise, this inhomogeneity has to be communicated by visual
means.

6. Future Challenges

During our extensive literature review, we encountered open prob-
lems in musicology that could be supported by suitable visualiza-
tion approaches. Combined with the needs that musicologists re-
ported us throughout our perennial collaboration and our own ex-
periences gained during interdisciplinary projects, we introduce a
list of future challenges for visualization in musicology. Despite the
manifold application fields of the researched visualization the back-
flow into a mainstream practice is rather low and not documented
in surveyed publications. Probably the group of interfaces for mu-
sic production is the most affected, as seen through the commonly
used piano roll visualization.

Strengthen Interdisciplinary Collaboration. The papers in-
cluded in this survey are typically written by either musicologists
or computer scientists, but seldomly in a cooperative setting. While
we do not want to devalue these works, we want to highlight ad-
vantages for both fields in cooperating, as well as stress that works
dealing with musicology and visualization should meet require-
ments from both fields. Furthermore, collaborations with graphic
designers or visual artists can lead to more artistic visualizations
like the work of Lupi and King [LK18]. For the visualization and
musicological domain, we included a short paragraph for each data
section, highlighting advantages, challenges and in general rele-
vance for each separately. These data type specific points won’t be
repeated here. Instead, we want to highlight that the collaboration
is crucial, as the musicological part in music visualizations brings
the expertise needed to analyze features and comprehend reasons
and causes. For the visualization part, there exists a big effort to
learn how visualization can be used to improve the communication
of features to users and how to reduce distortion. Further, visual-
izations or more general computer science techniques are crucial to
providing infrastructure and knowledge about data handling, digi-
tization, and processing. Next, musicology offers a vast amount of
a wide range of data types, often not fully tapped. Scientists are
interested in literally seeing data, which is the high value of visu-
alization, as it does not only offer the data itself but users (casual
users, researchers, experts, ...), research questions and in general
a demand of visualization for making use of the potential in data,
also.

Distant-Reading Analysis of Score Collections. While we do
have a whole section dealing with musical collections (see sec-
tion 4.2), all found works deal exclusively with sound data. As seen
in section 4.1, not only the sound itself is of interest to musicol-
ogy but also the scores of songs. When taking this into account,
it is quite astonishing that there is a clear lack of collection-wide
analysis tools of musical scores. This could be caused by the col-
lection section mainly holding tools used by casual users, who are
more interested in the sound itself than the written score. Neverthe-

less, these questions exist and can be answered with distant-reading
approaches, making it easier to find similarities and significant out-
liers in score texts. Plausible questions can be included to find strict
similarities and plagiarism, similar as shown by Ono et al. and De
Prisco et al. [OCF∗15,DPLM∗16]. The usage of score information
requires a stronger text analysis as shown in [JGBS14].

Metadata Visualization of Instruments. As described in the in-
strument visualization section (see section 4.4), researchers started
to include digital representatives of instruments in their considera-
tion. While the found and included works show usage of mainly CT
data and three-dimensional rendering, we also encountered textual
metadata usage. From a visualization point-of-view, these works
were too weak to be included in the survey. We found this lack
of textual metadata visualization quite surprising, as this is quite
common for the other listed data types (especially the musicians
and their biographies). One example is the timeline visualization
of instruments from multiple musical instrument museums by Kus-
nick et al. [KKFJ20b]. The single instrument’s lifetime events are
enhanced with hypothesized relations to matching musical pieces,
through the analysis of metadata about the two entity classes. Fur-
ther, a metadata visualization approach is rather simple, compared
to a three-dimensional one, as knowledge of other sources can be
used and tools adapted. Like in the previous paragraph, we encoun-
tered the potential for especially distant-reading tools, which allow
inspection of e.g. trends of instrument usage throughout the time.
An indirect example of a usage scenario can be seen by Khulusi et
al. [KFJ18, KJKF19], who visualized the temporal development of
the lute instrument, represented through metadata of lute players. A
more direct approach to visualizing instruments developments and
trends has been marked as interesting by our collaborating musi-
cologist, as well.

Visualizations of an Instrument’s History. The value to visu-
ally analyze musicians embedded in a temporal context is docu-
mented in various works [AWR∗07,YSB09,KJKF19], as it enables
understanding trends and seizing historical events. While the above
paragraph dealt with general trends for a type of instrument, our
collaborating musicologists desired similar approaches to investi-
gate the career of a single instrument, for which far fewer meta-
data exists. The musicological term for inspecting the career of
an instrument is provenance research and is built on the knowl-
edge that an instrument has different properties throughout the time
and is to be inspected with regards to these changes and not as
a static object. As an example, an instrument may have under-
gone a restoration process, changing physical components or, been
modernized, resulting in a change of sound range. Other examples
of events shaping the career of an instrument may be production,
owner change, presentation or performance. Each of these events
can be associated with geospatial and temporal data, associated
persons and further metadata (like prize, value, collection, etc.).
Currently, such information is collected and digitized in musicol-
ogy projects such as the musiXplora [Foc19] or Music Instruments
Museums Online [Mus11], and first visualization approaches are
available as browser applications (see a prototype-like screenshot in
Figure 26). But, sophisticated approaches are necessary to align an
instrument’s career to historical musical pieces, such as the Réper-
toire International des Sources Musicales (RISM) [LBPP19]. Sup-
ported by interactive visual means, this would enable to investi-
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Figure 26: Comparison of temporal and geospatial information on
production events of different clavichords [KKFJ20a]. Each color
represents a type of clavichord

gate which instruments may have been used in performances like
operas. Still, this needs further basic research focussing on musi-
cological terms, that is (especially throughout the centuries) non-
standardized and hence hard to match (see section 5.4).

Workflow for Musicology. Musicology is a heterogeneous field,
dedicated to different types of users, and including different types
of data and different tasks. In order to ease the process of develop-
ing novel visualization strategies for musicology, a generic work-
flow, guidelines and best practices are highly requested. Miller et
al. [MHK∗18] propose a pipeline for designing visualizations for
musical scores, which serves a clear need but only includes one of
the data types. A holistic workflow or further pipelines for musical
collections, musicians and instruments are highly appreciated.

Working with Historical Data. The lack of works dealing with
historical data was quite surprising. Musicology, a field with a
long history, offers data aged for centuries and interesting ques-
tions on the development of cultural aspects. Next to works deal-
ing with biographical data [AWR∗07, JFS16, KJKF19] only a few
visualizations have been designed to communicate sound pat-
terns [Wat02,Hal13]. As stated in Section 5, dealing with historical
data is not trivial and requires novel workflows. Our collaborating
musicologist highlighted the need to regard musicological data un-
der historical aspects. An example is a pitch of instruments (the dif-
ference in distance of the halftones of instruments), which changed
throughout the time, resulting in a distorted perception of music,
e.g., emotion and harmony when addressing historic instruments.

Communicating Inconsistencies in Musicological Data. Our
review on inconsistencies in musicological data and how these are
processed (see Section 5) revealed a lack of solutions to visually
inform users about these inconsistencies. Additionally, there seems
to be an awareness that inconsistencies like imprecision, incom-
pleteness or inhomogeneity exist. Only a few works introduce tech-
niques to visually encode temporal imprecision [JFS16, KJKF19].
Future works should not only disclose such information to avoid

misinterpreting visualizations but also produce novel visualization
means to communicate uncertainties.

Multi-Modal Data Visualization. Many research inquiries in
musicology address only one specific data type, and only a few
works tackle multi-modalities [YGK∗07,KJ16,AGC∗17,KJKF19].
As the musiXplora [Foc19] shows, the combination of multiple
types of entities provides a high potential for musicology research
that enables gaining new insights. It offers a database that can be
queried through diverse web-based visual interfaces [KKFJ20a].
The database includes the present state of musicological biogra-
phy data for more than 30,000 persons relevant for music his-
tory from around 2,000 years. As an ongoing research project that
started in 2004, the musiXplora deals with historical and present
sources of data of different facets of musicology. Although it cur-
rently focuses primarily on person’s biographies, the responsible
researchers hinted on further, unpublished data about other musi-
cological relevant data types like places, objects, institutions, me-
dia, events, and terms [Lei17, Lei18]. The offered data is already
used by multiple research papers included in this STAR [JFS16,
KJ16, JF17, Jän18, KJKF19]. Besides this, the work with multi-
modal data, shown through many associated works gives insight
into potential new approaches to provide data access through vi-
sualization. Data-wise, all available data is stored in a relational
database and is accessible as textual data, linking features to ids
of the persons. This leads to data like a person’s working time, in-
formation about professions like soprano singer and violin player
as well as institutions he or she worked at like the "Bayerische
Staatsoper" ("Bavarian state opera") and "Würzburger Hofkapelle"
("Würzburger’s court orchestra"). Due to the historical nature and
dependency on documentation, the data is missing a linkage be-
tween the different subtypes. Hence, e.g. information about a per-
son’s profession that was held in the Bayerische Staatsoper or the
working time of the musician in the court orchestra are not ex-
tractable, only a list of all professions and the general working
time. Thus, the database does not only bring its own challenges
and issues but also shows musicological approaches to tackle many
of the previously listed challenges, arising in working with musi-
cological data in general (see section 5 and previous paragraphs
of section 6). Examples include temporal uncertainties, communi-
cating inconsistencies in terms, non-standardized, incomplete and
uncertain sources and further.

Annotating Three-dimensional Models of Musical Instru-
ments. Recently, the visualization of three-dimensional CT scans
became a valuable tool to analyze and interact with musical instru-
ments, supported by a general trend in science and a rocket-like
explosion of new advances in the computed tomography sector in
the last 30 years [H∗09]. Especially for restorers, this method could
support the non-destructive inspection of valuable objects and the
discovery of weak or damaged parts, not visible from the outside. A
useful tool would not solely require the functionality and pipeline
of an instrument being scanned but also to enable annotations. This
would help to directly mark and document conspicuous parts, even
through changes of scale and the color transfer function. We iden-
tified work going into this direction (see section 4.4 and the work
of Konopka et al. [KSKE17]), but they rather use simulations to get
insights into expected changes on an object in the future, instead of
actual ones as of today. The rendering of virtual instruments along-
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side with annotated parts is also desired for teaching and presen-
tation purposes. In addition, animations could aid to communicate
how instruments work. Visualization of the internal movements of
music instruments, the flow of air and mechanical interaction could
further enhance the understanding of learners and museum visitors.
For such a diversity of visualization applications addressing multi-
ple user groups, the major challenge not the visualization in the first
place, but rather the design of intuitive, interactive user interfaces.

Simulation, Visualization and Exploration of Instrument
Data. Many historic instruments cannot be played without the risk
of damaging the object. Still, researchers are interested in hearing
the sound of these instruments and the understanding mechanisms
involved in the sound generation. Kirsch and Plath [SP18] showed
that the visual animation of instruments’ sound generation based
on scanned instruments is possible. For enjoyment and pedagog-
ical purposes, this information may be presented with visualiza-
tions. Besides the reconstruction of sound generation itself, visual
reconstruction of the surfaces of CT scanned instruments may al-
low simulation of the original sounds.

Reconstruction and Reproduction of Instruments. A high-
level goal is reconstructing (rare) musical instruments based on CT
scans. First approaches use CT data and 3D-scanners to print plastic
variants [SP18]. While giving a hint on the feasibility of this task,
even allowing for sound generation, these prototype-like prints lack
both, quality and material components, to be considered as a kind
of replication. A possible pipeline for such a project may be the
reconstruction, followed by the reproduction either through the au-
tomatic generation of blueprints or direct linkage to 3D-printers or
wood-working machinery.

7. Conclusion

The intersection of musicology and visualization has brought forth
a diversity of innovative applications designed for a variety of pur-
poses. On the one hand, musicologists are served with interactive
tools to analyze musicological data of a different kind, on the other
hand, applications are tailored for the broad public to communi-
cate and to teach aspects of music in a more intuitive, playful man-
ner. Our survey includes 129 related works from different disci-
plines, all of them include sophisticated visualization techniques to
illustrate features and relationships among musicological data en-
tities. With a strong focus on the targeted musicology domain that
provides data, we classified the works first by the type of data—
musical works, musical collections, musicians and instruments—,
with sub-categories indicating the intended use of the offered vi-
sualization, followed by a deeper analysis of supported domain-
specific user tasks. This allows to easily detect visualizations de-
signed for specific purposes, e.g., for comparative analysis, for
enjoyment or for annotation support. The diversity of application
scenarios yields data sets of various scales comprising different
inconsistencies. We define aspects of uncertainty in the scope of
musicology, and we investigated in what form vastness, impre-
cision, incompleteness and inhomogeneity occur in musicological
data sets and how upcoming issues are tackled. Though such in-
consistencies are prevalent in many data sets of the collection, only
a few works communicate them visually. The visualization of un-
certainty in musicological data marks a major future challenge. In

addition, our survey summarizes diverse future prospects includ-
ing the intense engagement with historical data to serve a broad
palette of research questions and solutions for in-depth analysis of
three-dimensional models of instruments aiming to enable the re-
construction of unique items.
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