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ABSTRACT

Visually conveying time-dependent changes in tag maps is insuffi-
ciently addressed by current approaches. Typically, for each time
range a tag map is determined, and the change between tag maps
of subsequent time ranges is progressively visualized. Our method
compares tag maps locally in order to enable a continuous dis-
play of geographical topic changes among subsequent time ranges.
We further provide an alternate tag map variant focusing on fre-
quency changes instead of relative frequency values to visualize the
geospatial-temporal rise and fall of topics.

Keywords: visualization, geo-spatial, time-dependent, point-based
data, data aggregation

1 INTRODUCTION

Tag maps are geographical maps having a thematic layer in the
form of a tag cloud, in which tags are placed in close vicinity to
the geographical location they are associated with [16]. By placing
tags instead of colored glyphs on the map, the richness of categorial
data sets can be preserved and communicated to the observer [24].
Nevertheless, tag map algorithms require to aggregate tags and
to hide less relevant tags in order to avoid occlusions. Means of
filtering on the basis of diverse metadata can serve to deliver a
more precise tag map representation. For example, for data sets
having temporal alongside with geographical information, current
approaches offer to select a time range that filters the tags on the
map to be displayed [18]. In addition, time-dependent selections can
be animated using a sliding time window [29]. But, for each time
range the tag map is recomputed and changes between subsequent
time ranges are neither determined nor visually communicated.

We fill this gap in order to easen the visual analysis of time-
dependent tag maps. Based on Predominance Tag Maps [24], we
identify locally related tags among subsequent time ranges in order
to enable a seamless visualization of temporally changing tag maps.
In addition, we propose a variant tag map approach that focuses on
tag frequency changes instead of relative frequency values in order
to illustrate the geospatial-temporal rise and fall of topics.

2 RELATED WORK

Many visualizations are designed to analyze time-stamped, geo-
referenced and/or tagged data. Focusing on tagged data, we observe
related works in three categories.

Space & Tags Tag maps visualize tags representing geo-
referenced data items on a map. Two basic approaches for gen-
erating tag maps exist [24]. Tag-cloud-driven Tag Maps aggregate
the frequencies of tags for a specific geospatial area, and a tag cloud
layout algorithm is used to position tags on the map. Maple [13]
determines tag distributions for specific geographical locations and,
originating from that location, a Wordle [30] is computed and used
as a thematic map layer. Other methods make use of polygonal geo-
graphical boundaries. Taggram [21] aggregates all tags associated
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to a single country and places tags arbitrarily within the country’s
bounds. In contrast, Geo word clouds [3] take actual averaged lo-
cations of tags into account. Location-driven Tag Maps position
tags at their respective geographical locations, and algorithms are
designed to avoid occlusions. Jaffe et al. [16] cluster data items
geographically, and a representative tag is placed for each cluster
leading to a sparse tag map in which tags may occlude. Thom et
al. [27] detect occluding tags that are merged if they are equal, or dis-
placed using an Archimedian spiral, which leads to moving the tag
away from its dedicated geographical context. Predominance Tag
Maps [24] are designed to prevent from potential misinterpretations
of that kind. Each tag on the map represents the relative majority
of data items enclosed by the tag’s bounding box. In this paper, we
present a method that extends the design of Predominance Tag Maps
to communicate and to analyze time-dependent, geographical topic
changes.

Time & Tags The visualization of time-dependent, tagged data
has been subject to several works in order to illustrate predominant
tags for specific time ranges and to support the visual analysis of
trends. Parallel Tag Clouds [6] list the most important tags per time
range vertically, and changes of frequencies of words between time
ranges are visually indicated by thickening or thinning horizontal
connections. In contrast, SparkClouds [19] display a time chart
alongside each tag in the tag cloud to easen the comparative temporal
analysis among tags. Other approaches display tags in a time chart
representation. While many approaches only show tags on demand
when selecting certain time ranges, e.g., [7, 26], some methods
position tags directly within large whitespace areas of streams of
stacked graphs [10, 25]. WordStream [8] uses all available space by
reconstructing the streams with tags associated to the corresponding
category and time. Other visualizations generate spatializations to
show the evolution of tagged data over time. Mashima et al. [20]
generate an animated tag cloud like map together with a heat map
to indicate trends, Gansner et al. [12] and Chen et al. [5] overlay
map spatializations with keywords or integrate them into the map
metaphor [4].

Space, Time & Tags Many visual interfaces visualize tem-
poral, geographical and thematic information simultaneously in
different views [9, 15], but only few approaches cater for communi-
cating temporal changes on the basis of tag maps. Nguyen et al. [22]
use text style or visual glyphs in the background of tags to to illus-
trate temporal changes of tags in (static) Taggrams [21]. In order to
analyze time-dependent changes in tag maps, Scatterblogs [27–29]
provide a timeline where data items can be selected by interactively
defining a time range. By sliding this time range, the tag map
changes accordingly. Similarly, Bird’s Eye [18] actualizes the tag
map once the temporal selection changes. Likewise, Hao et al. [14]
use a calendar view for temporal filtering prior to updating the tag
map. In all cases, tag maps are just recomputed according to the
new temporal selection, and relations between tags of subsequent
time ranges are not taken into account. We fill this gap using the
Predominance Tag Map algorithm [24] to identify time-dependent,
geographical changes.

3 TIME VARYING PREDOMINANCE TAG MAPS

We base our method on the Predominance Tag Map (PTM) algo-
rithm. This algorithm takes as input a set of two dimensional points



each associated to one labeled category as well as a range of font
sizes [ fmin, fmax] the final set of non-overlapping tags should lie in-
side. The algorithm consists of three major steps: (S1) A set of seed
positions is derived from the given point set. (S2) Each seed position
serves as center point for one tag candidate. For every candidate, a
font size, label category, and score is computed. As the seed posi-
tions are generated relatively close to each other with respect to the
user given font size bounds, the tag candidates overlap heavily. (S3)
In the final step, a set of non-overlapping tags is selected by greedily
placing the tags in descending order of font size and rejecting those
that would produce an overlap. For more details on the original PTM
algorithm we refer the reader to [24].

We modify the algorithm in order to generate an animation show-
ing the development of the predominant categories over time. Instead
of two dimensional points, the input consists of a set of labeled three
dimensional positions (latitude, longitude and a time stamp). We di-
vide this three dimensional input data into user specified time slices
of equal duration. The straight forward approach is to apply the
original PTM algorithm for each time slice, generating one frame
of the animation. However, there are a few issues with this naive
approach for which we present solutions below.

3.1 Font Size Comparability

In general, font size as indicator for the importance of tags is one
of the most important visual features in tag clouds (and tag maps
in particular). In the original PTM algorithm, the font sizes of the
tag candidates are calculated in S2. This is done using a bisection
optimization that correlates the font size of a tag candidate with its
score. The score is computed by a configurable function S given
the histogram of categories present in the candidates aggregation
area—which itself is font size dependent—as input. To keep the font
sizes comparable across different time steps, we slightly modify this
step of the original algorithm such that tags with the same font size
in different time steps represent the same underlying score. The orig-
inal bisection method assigns the tag candidates the font size fmin
which have the score value scoremin, the minimum of all occurring
scores computed at fmin. Analogously fmax is assigned to the candi-
dates having the score value scoremax computed at fmax. All other
candidates are assigned font sizes lying as closely as possible on the
line spanned by the two points (scoremin, fmin) and (scoremax, fmax)
in the respective score vs. font size Euclidean space. Instead of
determining scoremin and scoremax independently for each time step,
we calculate the global minimum and global maximum of all time
steps in a pre-processing step. In each time step, we use these global
extrema instead, resulting in the same line the bisection method
optimizes the font sizes to, thus, resulting in comparable font sizes
across the time steps.

3.2 Visual Stability

Another issue we encountered were lots of small movements of
tags between time steps resulting in visual clutter and an unsteady
animation. We gain a steady animation by modifying S1 and S3 of
the original PTM algorithm. Instead of calculating the seed positions
independently for each time step in S1 we use the same, unified set
of seeds for all time steps. Fig. 1a shows the situation of the naive
approach for a minimal example consisting of three time steps, each
completed S2. As such a tag candidate, depicted by its bounding
box, is calculated for each of the three seed positions. In the first
time step t1, S3 of the unmodified greedy method will choose the
tag candidate at s1 to be displayed, since it has the largest font size,
as well as the candidate at position s3. The candidate at s2 will be
omitted as it overlaps with the tag at s1. In t2 however, only s2 will
be selected, while in t3 again s1 and s3 will be chosen. Since all red
tags share the same label, it appears as if this label slightly moves
from s1 to s2 and back to s1. This demonstrates an example of such
unnecessary visual clutter.

(a) The naive approach treating
each time step independently.

(b) Our proposed method, which
groups consecutive tag candi-
dates with identical category into
atomic visual units.

Figure 1: An illustration of the visual stability issue when applying the
PTM algorithm to each time slice independently. The tag candidates’
bounding boxes for three seed positions s1, s2, s3 and three consecu-
tive time steps are shown. Solid boxes represent the tags which will
be present in the final tag map, dotted boxes represent the tags which
will be omitted. The color encodes the predominant category of each
candidate.

Our proposed solution for this problem works by simply selecting
a different, but still representative subset of non-overlapping tag
candidates to render the final tag map in S3 of the PTM algorithm.
After S2 is calculated for all time steps, we loop over all time steps
for each seed position independently and chain together adjacent
time steps of a seed position whose tag candidates share the same
label. Fig. 1b depicts this for the example by solid colored, vertical
lines. For s1 and s2 all three time steps belong to one chain, while for
s3 only the first two time steps connect, the last is a chain consisting
of only one time step. Instead of deciding about the placement of the
tag candidates for each time step independently in S3, we greedily
place those chains as a whole, or rather their tag candidates, if space
in respective time steps permit. The only thing left is to decide about
the order the greedy algorithm processes the chains. We obtained
good results by ordering descending by accumulated tag candidate
score. As such, a chain with larger total score, which corresponds
to larger accumulated font sizes, is placed before a chain having
smaller accumulated font sizes. For equal accumulated scores, we
order by number of time steps a chain has, then by label, then by
position. In the example in Fig. 1b all tag candidates of the chain at
s1 will be placed first as it has the highest accumulated score. Then,
the chain at s2 will be omitted, as its tag candidates overlap with
those of the chain at s1. Finally, both chains at s3 will be placed
since space permits. As a result, the red labeled tags no longer move
across time steps, but appear to change font size slightly, reflecting
the change of score driven by the underlying area.

We incorporate two more measures to further increase the visual
stability. First, it is desirable to suppress areas with a low density
of data points. The probability that predominant categories change
rapidly in those regions is high, compared to the low reliability
of that information. One way to achieve this is determining low
density areas and remove the data points of those regions. How-
ever, we propose another approach that employs our aggregation
method. Before grouping the tag candidates in S3, we filter out those
candidates with insufficient data points inside their bounding box,
respectively with a low sum of histogram values derived from the
label category distribution of the data points inside that box. Using
the histogram for filtering allows for an abstraction useful for our
trend visualization described in Sect. 4. Second, we implemented a
sliding window approach to be able to smoothen the visualization
over time. For each time step t, instead of using only the data points
of t, we unify the data points of the time step range [t, t +w] where
w is the parameter of the window length and use this unified set.



Figure 2: An illustration of the histogram calculation of a tag candidate
for the three trend visualization modes showing increasing (inc), de-
creasing (dec) and absolute difference (abs) between two time steps ti
and ti+1.

4 TREND VISUALIZATION USING DIFFERENTIAL TAG MAPS

We model the data obtained after the division of our three dimen-
sional input data into user-defined time slices of equal duration as a
function

f : A×T → Rn

that maps an arbitrary spatial region a∈ A for a given time step t ∈ T
into a vector, containing the number of occurrences1 of each of the
possible n categories. The predominant category is the component
in that vector which has the largest value. A predominance tag map
shows a subset A′ ⊂ A—the bounding boxes of the tags—for a fixed
time step t. As such our proposed animation shows the development
of the predominant categories over T .

The analysis of trends is an important aspect when dealing with
time-dependent data [1]. The rise or fall of a variable over time may
give hints to interesting events or properties. Examples for our data
domain could be the rise or fall of the number of supermarkets of
a certain brand in a certain area to indicate the change of its mar-
ket share or the development of the number of birds of a species
over time to indicate if the species consists of migrant birds and at
which times the migration happens. With respect to our data model,
even if we only consider one specific area—one tag, we find the
development of n variables over time. Our tag map approach always
selects the predominant variable per time step, which results in vi-
sualizing the development of the predominant categories. However,
there might be categories that change more dramatically between
time steps than the predominant does. We designed a variant of our
approach that visualizes the category which changes most instead.
The original PTM algorithm assigns a label to a tag candidate by
evaluating the mode of the histogram reflecting the category distri-
bution inside the tag candidates aggregation rectangle Rc (which
equals its bounding box in the ePTM variant). For a given time step
ti and a given area of a tag candidate Rc, we adapt this label assign-
ment by first calculating the difference between each component
of the histograms of Rc at ti+1 and ti. For this resulting difference
histogram the mode is calculated, so the predominant category of
the difference histogram, which corresponds to the category which
changes most, is assigned as the label of a candidate. This histogram
can be obtained in three different variants shown in Fig. 2.

Of course, in addition to generate an animation showing the
development of most changing categories, we can generate a static
image showing the difference between any (non adjacent) time steps.

5 COMPUTATIONAL COMPLEXITY

Our proposed time varying animation changes the overall complexity
roughly by a factor of t compared to the original PTM algorithm,
where t is the number of time steps. Calculating the unified set of
seed positions is still minor with respect to the other steps, as well
as greedily placing the chains of tag candidates. This step, as well
as accounting for comparable font sizes by using global extrema of
scores is just a rearrangement of operations. Calculating the chains

1Mapping to R is a generalization which could be useful e.g. to model
proportional scores

Table 1: Visual stability analysis showing summary statistics of the
visual similarity of successive time steps of an animation. For all
three data sets two versions of animations showing the evolution of
predominant categories over time were analyzed. The means for all
three data sets increased – at most for the synthetical data set – using
the optimized version. It can further be seen that the supermarket
data set shows the less visual change of predominance, while our
synthetical data set contains the most, respectively contains the most
noise which we consciously provoked.

naive optimized
µ σ µ σ

synthetical 0.60 0.007 0.79 0.010
supermarkets 0.91 0.052 0.97 0.026
musicians 0.72 0.076 0.78 0.079

of tag candidates can be done in O(t · s), where s is the number of
seed positions. The adaptations to the histogram calculation for
the trend visualization do not change its complexity. So the overall
complexity of the time dependent version of e.g. the ePTM variant
is O(t · s · l2 · log2n), where l is the total number of unique categories
and n is the maximal number of data points per time step.

6 EVALUATION

To evaluate our approach, we use one synthetical and two real world
data sets.

Noisy Synthetical Data (synthetical): We generated a data set
containing three categories ”A”, ”B”, and ”C”. It spans a rectangular
area and consists of 30 time steps. Each time step is generated
randomly using Poisson disc sampling [2]. We keep the density of
the categories ”A” and ”B” uniform, where ”A” is twice as dense.
The density of ”C” follows a two dimensional Gaussian distribution
with its center moving diagonal across the time steps. The density at
this center point for category ”C” is higher than that of ”A”.

Open Street Map Supermarket Names (supermarkets): From
the historic Open Street Map data set [23], we filtered those nodes
that are positioned inside a bounding box spanning roughly across
Europe and which are marked as supermarkets. We used their respec-
tive name attribute as their category. As the remaining set contained
more than 10,000 different categories – which our algorithm is cur-
rently not able to handle computationally – we further filtered those
nodes associated to the top 100 occurring names. We divided the
remaining set into time slices of one month duration each.

Musical Professions (musicians): The musiXplora [11] is a
database that offers biographical information of more than 30,000
musicians from the past 2,000 years. As an ongoing research project
(started in 2004), the musiXplora deals with historical and present
sources of data of different facets of musicology. Associated to
the persons in the database are their musical professions, relevant
places as well as years of their activity. We generated time steps
after ten years each, starting with the year 1500. For each time step,
we generated a data point for a location, if that location is associated
with a person active in the respective year and associated the musical
profession of that person to the data point.

Visual Stability We quantitatively evaluated the improve-
ments to the visual stability described in Sect. 3.2 by using the
matching visual overlap introduced in [24]. This measure calculates
the percentage of identically labeled tag bounding box area between
two tag maps. For a given animated tag map, we calculate this
measure between any two successive time steps. Table 1 shows the
mean and standard deviation over all obtained percentages. A video
showing the animations used as basis for the calculation is included
in the supplemental material.



Figure 3: Top row: Results of the supermarkets data set. The left image is the frame of the animation showing the development of predominant
categories at January 2012, the middle image is the frame at December 2012. The right image is the result of the trend visualization showing the
most decreasing supermarkets (dec) between those time steps. We filtered out tag candidates with a low amount of change as described in
Sect. 3.2. Bottom row: Results of the musicians data set. The left image shows the predominant categories at 1800, the middle image at 1900.
The right image shows the trend visualization for both directions (abs). Increasing occurrences of professions between 1800 and 1900 are colored
in blue, decreasing are colored in red.

Supermarkets By qualitatively analyzing the supermarkets
data set using our method, we were able to detect and identify the
change in market share of a number of supermarket brands. The
top row of Fig. 3 depicts an example thereof. Our proposed trend
visualization clearly shows the decreasing number of ’Schlecker’
stores from the beginning to the end of 2012, which were not visible
just by looking at the development of predominant categories. This
decrease correlates with the time of the insolvency proceedings of
the company in beginning of 20122 and the closing of the majority
of their stores. The video in the supplemental material shows the de-
velopment of predominance as well as a decreasing trend animation
with which we were able to identify more of such events, e.g. the
sale of the ’Tengelmann’ (Southern Germany) brand in 2017 as well
as the sale of ’C1000’ (Netherlands) spanning from 2012 to 2015 or
the insolvency of ’Zielpunkt’ (Austria) in 2016.

Musical Professions Using our proposed animation of the
temporal development of predominant tags and the proposed trend
visualization we were able to strengthen and confirm findings related
to the musiXplora database. Khulusi et al. [17] describe an evolution
of musical institutions in the 19th century. Secularization processes
lead to the foundation of institutions of higher education. At the
same time the number of court orchestras decreased. It might be
reasonable that such evolution coincides with the change of pro-
fessions. In the bottom row of Fig. 3, we show the predominant
professions at 1800, the predominant professions at 1900 as well as
occurring trends by visualizing the difference between those time

2https://en.wikipedia.org/wiki/Schlecker

steps. A latent change in predominant professions can be seen in
1900 compared to 1800, apart from the overall increase in volume,
such as the occurrence of ’Sopranist’s (soprano) and ’Gesangslehrer’
(singing teacher). In the right image a clearly upward trend of those
and other professions can be seen, which gives an impression of
this evolution. There are further interesting developments visible in
the video included in the supplemental material, e.g. the rise and
fall of the ’Meistersinger’ (master singers) profession, which was
predominant in a specific area in Germany around 1600.

7 CONCLUSION AND FUTURE WORK

In this work, we focused on visualizing temporal changes in tag
maps. We developed a geo-spatial, time-dependent visualization
technique based on the Predominance Tag Map algorithm [24] that
generates an animation optimized to reflect the development of pre-
dominant categories over time, while trying to avoid visual clutter by
suppressing unnecessary visual changes. We further developed a new
technique that visualizes trends among the occurrence of categories.
The rise or fall of those categories are shown by generating differ-
ential tag maps between time steps. We evaluated both approaches
using two data sets showing the development of supermarket stores
and musical professions and we detected visual patterns that we
could relate to real world events. While the algorithm is able to
handle a large number of data points, it could be improved with
respect to the number of different categories it can handle, as the
supermarket data set indicates. Future work includes improving the
scalability and the computational complexity of the approach.
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