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The “curse of dimensionality”: one buzzword for many 
bl [KKZ09]problems [KKZ09]

• First aspect: Optimization Problem (Bellman).
“[Th ] f di i lit [ i ] l di ti th t h l d“[The] curse of dimensionality [… is] a malediction that has plagued 
the scientists from earliest days.” [Bel61]

– The difficulty of any global optimization approach increases y y g p pp
exponentially with an increasing number of variables (dimensions).

– General relation to clustering: fitting of functions (each function 
explaining one cluster) becomes more difficult with more degrees ofexplaining one cluster) becomes more difficult with more degrees of 
freedom.

– Direct relation to subspace clustering: number of possible subspaces 
increases dramatically with increasing number of dimensions.
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• Second aspect: Concentration effect of Lp-norms
– In [BGRS99,HAK00] it is reported that the ratio of (Dmaxd – Dmind) to 

Dmind converges to zero with increasing dimensionality d
• Dmind = distance to the nearest neighbor in d dimensionsDmind  distance to the nearest neighbor in d dimensions
• Dmaxd = distance to the farthest neighbor in d dimensions
Formally:
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• Distances to near and to far neighbors become more and more 
similar with increasing data dimensionality (loss of relative 
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g y (
contrast or concentration effect of distances).

• This holds true for a wide range of data distributions and distance 
functions but
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From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard 
deviation, maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The 
expectation grows, but the variance remains constant. A small subinterval of the domain of the norm is reached in 
practice. (Figure and caption: [FWV07])

– The observations stated in [BGRS99,HAK00, AHK01] are valid within clusters but not 
between different clusters as long as the clusters are well separated 
[BFG99,FWV07,HKK+10].
This is not the main problem for subspace clustering although it should be kept in
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– This is not the main problem for subspace clustering, although it should be kept in 
mind for range queries.
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• Third aspect: Relevant and Irrelevant attributes
– A subset of the features may be relevant for clustering
– Groups of similar (“dense”) points may be identified when considering 

these features onlythese features only
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– Different subsets of attributes may be relevant for different clusters

relevant attribute/
relevant subspace

Different subsets of attributes may be relevant for different clusters
– Separation of clusters relates to relevant attributes (helpful to discern 

between clusters) as opposed to irrelevant attributes 
(i di ti i h bl di t ib ti f tt ib t l f diff t l t )
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– Effect on clustering:
• Usually the distance functions used give equal weight to allUsually the distance functions used give equal weight to all 

dimensions
• However, not all dimensions are of equal importance
• Adding irrelevant dimensions ruins any clustering based on a 

distance function that equally weights all dimensions
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• Fourth aspect: Correlation among attributes (redundancy?)
– A subset of features may be correlated
– Groups of similar (“dense”) points may be identified when considering 

this correlation of features onlythis correlation of features only

– different correlations of attributes may bedifferent correlations of attributes may be
relevant for different clusters

– can result in lower intrinsic dimensionality of a data set
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• there are other effects of the “curse of dimensionality”
• just another strange fact: the volume of hyperspheres 

shrinks with increasing dimensionality!
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[HKK+10]: Can Shared-Neighbor Distances Defeat the Curse 
f Di i lit ? (SSDBM 2010)of Dimensionality? (SSDBM 2010)

• we mainly aim at distinguishing these effects of the ’curse’:
t ti ff t ithi di t ib ti– concentration effect within distributions

– impediment of similarity search by irrelevant attributes
– partly: impact of redundant/correlated attributespartly: impact of redundant/correlated attributes

• as a remedy for similarity assessment in high dimensional 
data, to use shared nearest neighbor (SNN) information has , g ( )
been proposed but never evaluated systematically

• [HKK+10]: evaluation of the effects on primary distances 
(Manhattan, Euclidean, fractional Lp (L0.6 and L0.8), cosine) 
and secondary distances (SNN)
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• secondary distances are defined on top of primary distances
• shared nearest neighbor (SNN) information:

– assess the set of s nearest neighbors for two objects x and y in terms 
of some primary distance (Euclidean Manhattan cosine )of some primary distance (Euclidean, Manhattan, cosine…)

– derive overlap of neighbors (common objects in the NN of x and y)

)(NN)(NN)(SNN yxyx ∩
– similarity measure

)(NN)(NN),(SNN yxyx sss ∩=

yx )(SNN

cosine of the angle between membership vectors for NN(x) and NN(y)
s

yxyx ),(SNN),(simcos s
s =

cosine of the angle between membership vectors for NN(x) and NN(y)

• SNN has been used before in mining high-dimensional data, 
but alleged quality improvement has never been evaluated
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• distance measures based on SNN:
)(simcos1)(dinv yxyx −= ),(simcos1),(dinv ss yxyx −=

)),(cosarccos(sim),(dacos ss yxyx =

dinv: linear inversion

)),(ln(simcos),(dln ss yxyx −=
– dinv: linear inversion
– dacos penalizes slightly suboptimal similarities more strongly
– dln more tolerant for relatively high similarity values but approaches y g y pp

infinity for very low similarity values

• for assessment of ranking quality, these formulations are 
equivalent as the ranking is unaffected

• only dacos is a metric (if the underlying primary distance is a 
t i )
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• Artificial data sets: n = 10.000 items, c = 100 clusters, up to d = 640 
di i l t i d l d t i ddimensions, cluster sizes randomly determined.

• Relevant attribute values normally distributed, irrelevant attribute values 
uniformly distributeduniformly distributed.

• Data sets:
– All-Relevant: all dimensions relevant for all clusters
– 10-Relevant: first 10 dimensions are relevant for all clusters, the remaining dimensions 

are irrelevant
Cyc Relevant: ith attribute is relevant for the jth cluster when i mod c = j otherwise– Cyc-Relevant: ith attribute is relevant for the jth cluster when i mod c = j, otherwise 
irrelevant (here: c = 10, n = 1000)

– Half-Relevant: for each cluster, an attribute is chosen to be relevant with probability 
0 5 and irrelevant otherwise0.5, and irrelevant otherwise

– All-Dependent: derived from All-Relevant introducing correlations among attributes
X∈AllDependent, Y∈AllRelevant: Xi = Yi (1 ≤ i ≤10), Xi = ½ (Xi-10+Yi) (i > 10)

10 D d t d i d f 10 R l t i t d i l ti tt ib t
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Data sets show properties of the “curse of dimensionality”

All-RelevantAll Relevant
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Data sets show properties of the “curse of dimensionality”

10-Relevant10 Relevant
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• Using each item in turn as a query, neighborhood ranking reported in 
t f th A d (AUC) f th R i O titerms of the Area under curve (AUC) of the Receiver Operating 
Characteristic (ROC)
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Euclidean distance

All-Relevant 10-Relevant
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SNN based on Euclidean
All-Relevant

20/40/80/160/320/640 dimensions
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SNN based on Euclidean
10-Relevant

20/40/80/160/320/640 dimensions
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some real data sets: distributions of Euclidean distances
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some real data sets: distributions of SNN distances (Euclidean)
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some real data sets: ranking quality
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[KKSZ09]: Outlier Detection in Axis-Parallel Subspaces of High 
Dimensional Data (PAKDD 2009)Dimensional Data (PAKDD 2009)

general idea:
• assign a set of reference points to a• assign a set of reference points to a 

point o
(e.g., k-nearest neighbors – but keep(e.g., k nearest neighbors but keep 
in mind the “curse of dimensionality”: 
local feature relevance vs. meaningful 
di t )distances)

• find the subspace spanned by these 
reference points (allowing some jitter)reference points (allowing some jitter)

• analyze for the point o how well it fits 
to this subspace
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• distance of o to the 
f h lreference hyperplane:

( ) ( )∑
d

SSSHdi t 2)(( ) ( )∑
=

−⋅=
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S
ii

S
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• the higher this 
distance, the more 
deviates the point o

o
deviates the point o
from the behavior of 
the reference set, thethe reference set, the 
more likely it is an 
outlier
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subspace outlier degree 
(SOD) f i t(SOD) of a point p:

( )( )
)()(

)(,)(
RpR

pRHodistpSOD =

i.e., the distance 
li d b th

)()( )(
pRpR v

p

normalized by the 
number of contributing 
attributesattributes

possible normalization to a 
probability-value [0,1] in 
relation to the distribution of 
distances of all points in S
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Choice of a reference set for outliers?
• recall “curse of dimensionality”• recall curse of dimensionality

– local feature relevance need for a local reference set
– distances loose expressiveness how to choose a meaningful local p g

reference set?
• consider k nearest neighbors in terms of the shared nearest 

neighbor similarityneighbor similarity
– given a primary distance function dist (e.g. Euclidean distance)
– Nk(p): k-nearest neighbors in terms of dist
– SNN similarity for two points p and q:

)()(),( qNpNqpsim kkSNN ∩=
– reference set R(p): l-nearest neighbors of p using simSNN
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2-d sample data,
comparison tocomparison to
• LOF [BKNS00]
• ABOD [KSZ08]• ABOD [KSZ08]

SOD

LOF

ABOD
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• Gaussian distribution in 3 dimensions, 20 outliers
ddi 7 17 27 47 67 97 i l t tt ib t• adding 7, 17, 27, 47, 67, 97 irrelevant attributes
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[ABD+08]: Robust clustering in arbitrarily oriented subspaces
(SDM 2008) (extended version: [ABD+08a])(SDM 2008) (extended version: [ABD+08a])

• Algorithm CASH: Clustering in Arbitrary Subspaces based 
on the Hough-Transformg

• Hough-transform:
– developed in computer-graphics

2 di i l (i i )– 2-dimensional (image procesing)
• CASH:

– generalization to d-dimensional spacesgeneralization to d dimensional spaces
– transfer of the clustering to a new space (“Parameter-space” of the 

Hough-transform)
restriction of the search space (from inn merable infinite to O(n!))– restriction of the search space (from innumerable infinite to O(n!))

– common search heuristic for Hough-transform: O(2d)
→ efficient search heuristic

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)



DATABASE
SYSTEMS
GROUP

Subspace Clustering
GROUP

• given: 
fi d li b d ti i t

dD ℜ⊆
• find linear subspaces accommodating many points
• Idea: map points from data space (picture space) onto 

functions in parameter spacefunctions in parameter space

y δδ

p1

xpicture space parameter space α
δ
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• ei, 1 ≤ i ≤ d: orthonormal-basis
( )T d di i l t t h h d• x = (x1,…,xd)T: d-dimensional vector onto hypersphere around 

the origin with radius r
u : unit vector in direction of projection of x onto subspace• ui: unit-vector in direction of projection of x onto subspace 
span(ei,…,ed)

• α α : α angle between u and e• α1,…,αd-1: αi angle between ui and ei
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Length     of the normal vector with             and angles 
α1 αd 1 for the line through point p:

δ nr⋅δ 1=nr

α1,…,αd-1 for the line through point p:
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• Properties of the transformation
Point in the data space sinusoidal curve in parameter space– Point in the data space = sinusoidal curve in parameter space

– Point in parameter space = hyper-plane in data space
– Points on a common hyper-plane in data space = sinusoidal curves through a 

common point in parameter space
– Intersections of sinusoidal curves in parameter space = hyper-plane through 

the corresponding points in data space
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• dense regions in parameter space      
⇔ linear structures in data space p
(hyperplanes with λ ≤ d-1)

• exact solution: find all intersection 
points
– infeasible
– too exact

• approximative solution: grid-based 
clustering in parameter spaceclustering in parameter space
→ find grid cells intersected by at 
least m sinusoidsleast m sinusoids
– search space bounded but in O(rd)
– pure clusters require large value for r  

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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efficient search heuristic for dense regions in parameter space
• construct a grid by recursively splitting the parameter space (best-first-g y y p g p p (

search)
• identify dense grid cells as intersected by many parametrization functions

d id ll t (d 1) di i l li t t• dense grid cell represents (d-1)-dimensional linear structure
• transform corresponding data objects in corresponding (d-1)-dimensional 

space and repeat the search recursivelyp p y
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• grid cell representing less than m points can be excluded           
→ early pruning of a search path→ early pruning of a search path

• grid cell intersected by at least  m sinusoids after s recursive 
splits represents a correlation cluster (with λ ≤ d-1)splits represents a correlation cluster (with λ ≤ d 1)
– remove points of the cluster (and corr. sinusoids) from remaining cells
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• search heuristic: linear in number of points, but ~ O(d3)
depth of search s number c of pursued paths (ideally: c cluster):depth of search s, number c of pursued paths (ideally: c cluster):
– priority search: O(s⋅c)
– determination of curves intersecting a cell: O(n⋅d3)g ( )
– overall: O(s⋅c⋅n⋅d3)

(note: PCA generally in O(d3))
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(a) Data set (b) CASH: Cluster 1-5
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• stability with increasing number of noise objects
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• The curse of dimensionality does not count in general as an 
excuse for everything – depends on the number and natureexcuse for everything depends on the number and nature 
of distributions in a data set

• the nature of each particular problem needs to be studied in 
its own

• part of the curse: it’s always different than expected
if hi k h l d h bl f h• if you ever think, you have solved the problems of the curse: 
watch out for the curse striking back!
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• do not take everything for granted which is stated in the 
literatureliterature

• consider claims in the literature:
– is there enough evidence to support the claims?g pp
– is the interpretation of the claims clear?
– challenge them or support them

papers report the strengths o sho ld tr to find o t the• papers report the strengths – you should try to find out the 
weaknesses and to improve

• have fun!have fun!
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