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§ The Curse of Dimensionality
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GROUP

The “curse of dimensionality”. one buzzword for many
problems [KKZ09]

* First aspect: Optimization Problem (Bellman).

“[The] curse of dimensionality [... is] a malediction that has plagued
the scientists from earliest days.” [Bel61]

— The difficulty of any global optimization approach increases
exponentially with an increasing number of variables (dimensions).

— General relation to clustering: fitting of functions (each function
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— Direct relation to subspace clustering: number of possible subspaces

increases dramatically with increasing number of dimensions.
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» Second aspect: Concentration effect of L -norms

— In [BGRS99,HAKOOQ] it is reported that the ratio of (Dmax, — Dmin,) to
Dmin, converges to zero with increasing dimensionality d

* Dmin, = distance to the nearest neighbor in d dimensions
* Dmax, = distance to the farthest neighbor in d dimensions

Formally:
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Ve>0:lim,_ P{dist . 122~ M o |< 8—‘ =1
Dmin |

L

« Distances to near and to far neighbors become more and more
similar with increasing data dimensionality (loss of relative
contrast or concentration effect of distances).

 This holds true for a wide range of data distributions and distance
functions, but...
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10 20 30 40 50 60 70 80 90 100
dimension dimension

(@) (b)
From bottom to top: minimum observed value, average minus standard deviation, average value, average plus standard
deviation, maximum observed value, and maximum possible value of the Euclidean norm of a random vector. The
expectation grows, but the variance remains constant. A small subinterval of the domain of the norm is reached in
practice. (Figure and caption: [FWV07])

— The observations stated in [BGRS99,HAKO00, AHKO01] are valid within clusters but not
between different clusters as long as the clusters are well separated
[BFG99,FWV07,HKK+10].

— This is not the main problem for subspace clustering, although it should be kept in
mind for range queries.
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« Third aspect. Relevant and Irrelevant attributes
— A subset of the features may be relevant for clustering
— Groups of similar (“dense”) points may be identified when considering

these features only

irrelevant attribute
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relevant attribute/
relevant subspace

— Different subsets of attributes may be relevant for different clusters

— Separation of clusters relates to relevant attributes (helpful to discern
between clusters) as opposed to irrelevant attributes
(indistinguishable distribution of attribute values for different clusters).
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— Effect on clustering:

« Usually the distance functions used give equal weight to all
dimensions

« However, not all dimensions are of equal importance

« Adding irrelevant dimensions ruins any clustering based on a
distance function that equally weights all dimensions
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* Fourth aspect: Correlation among attributes (redundancy?)
— A subset of features may be correlated

— Groups of similar (“dense”) points may be identified when considering
this correlation of features only
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— different correlations of attributes may be N \‘\ >
relevant for different clusters

— can result in lower intrinsic dimensionality of a data set
— bad discrimination of distances can still be a problem
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* there are other effects of the “curse of dimensionality”
* just another strange fact: the volume of hyperspheres

shrinks with increasing dimensionality! .
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[HKK+10]: Can Shared-Neighbor Distances Defeat the Curse
of Dimensionality? (SSDBM 2010)

* we mainly aim at distinguishing these effects of the 'curse’:
— concentration effect within distributions

— impediment of similarity search by irrelevant attributes
— partly: impact of redundant/correlated attributes

« as a remedy for similarity assessment in high dimensional
data, to use shared nearest neighbor (SNN) information has
been proposed but never evaluated systematically

« [HKK+10]: evaluation of the effects on primary distances
(Manhattan, Euclidean, fractional L, (L, and L), cosine)
and secondary distances (SNN)

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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« secondary distances are defined on top of primary distances

» shared nearest neighbor (SNN) information:

— assess the set of s nearest neighbors for two objects x and y in terms
of some primary distance (Euclidean, Manhattan, cosine...)

— derive overlap of neighbors (common objects in the NN of x and y)
SNN (x, ») =[NN, (x) "NN, ()
— similarity measure QNN (v 1)
SIMCOS (x )_UUUS\J,]/
S ? y

S
cosine of the angle between membership vectors for NN(x) and NN(y)

 SNN has been used before in mining high-dimensional data,
but alleged quality improvement has never been evaluated

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)



S

DATABASE Shared'Neighbor DiStanceS

SYSTEMS
GROUP

 distance measures based on SNN:
dinv_(x, y) =1—simcos_(x, y)

dacos, (x, y) = arccos(simcos_(x, ))

c’,lnS (x,y)= —ln(simcoss(x, y))

— dinv: linear inversion
— dacos penalizes slightly suboptimal similarities more strongly

— dIn more tolerant for relatively high similarity values but approaches
infinity for very low similarity values

+ for assessment of ranking quality, these formulations are
equivalent as the ranking is unaffected

* only dacos is a metric (if the underlying primary distance is a
metric)
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S

DATABASE
SYSTEMS
GROUP

Shared-Neighbor Distances é

 Artificial data sets: n = 70.000 items, ¢ = 100 clusters, up to d = 640
dimensions, cluster sizes randomly determined.

* Relevant attribute values normally distributed, irrelevant attribute values
uniformly distributed.

 Data sets:

All-Relevant: all dimensions relevant for all clusters

10-Relevant: first 10 dimensions are relevant for all clusters, the remaining dimensions
are irrelevant

Cyc-Relevant: ith attribute is relevant for the jth cluster when i mod ¢ = j, otherwise
irrelevant (here: ¢ = 10, n = 1000)

Half-Relevant: for each cluster, an attribute is chosen to be relevant with probability
0.5, and irrelevant otherwise

All-Dependent: derived from All-Relevant introducing correlations among attributes
Xe AllDependent, Ye AllRelevant: X. =Y, (1 <i<10), X. =7 (X_,,+Y)) (i>10)

10-Dependent: derived from 10-Relevant introducing correlations among attributes

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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Shared-Neighbor Distances

Data sets show properties of the “curse of dimensionality”

Distance (ngrmalized to D, 640)
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Shared-Neighbor Distances

Data sets show properties of the “curse of dimensionality”

Distance (normalized tg D, 640)
(Dmax'Dmin)/D min
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« Using each item in turn as a query, neighborhood ranking reported in
terms of the Area under curve (AUC) of the Receiver Operating

Shared-Neighbor Distances

Characteristic (ROC)

true positive

Area under Curve

false positive

one query (neighbors same/different cluster)

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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Euclidean distance
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SNN based on Euclidean
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SNN based on Euclidean
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Shared-Neighbor Distances

some real data sets: distributions of SNN distances (Euclidean)
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some real data sets: ranking quality
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[KKSZ09]: Outlier Detection in Axis-Parallel Subspaces of High

Dimensional Data (PAKDD 2009)

general idea:

« assign a set of reference points to a
point o
(e.g., k-nearest neighbors — but keep
in mind the “curse of dimensionality™:
local feature relevance vs. meaningful
distances)

« find the subspace spanned by these
reference points (allowing some jitter)

4,

'Y

« analyze for the point o how well it fits
to this subspace

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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« distance of o to the H (R(0)) = (u @), v &)

&
reference hyperplane: 4,

dist(o, H(S)) \/Zv o, —u* ¥ 3

 the higher this
distance, the more
deviates the point o
from the behavior of
the reference set, the
more likely it is an
outlier
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subspace outlier degree 1 | R(p)) = (u*®, v &)
(SOD) of a point p: :

a’ist(o, H(R(p)))
‘VR(m‘

l.e., the distance
normalized by the
number of contributing

attributes

possible normalization to a ra
probability-value [0,1] in /
relation to the distribution of .
distances of all points in S

S

I

R(p) 4 1
A
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Choice of a reference set for outliers?

 recall “curse of dimensionality”
— local feature relevance = need for a local reference set

— distances loose expressiveness - how to choose a meaningful local
reference set?

« consider k nearest neighbors in terms of the shared nearest
neighbor similarity
— given a primary distance function dist (e.g. Euclidean distance)
— N,(p): k-nearest neighbors in terms of dist
— SNN similarity for two points p and q:

Simgy (P>q) = ‘Nk(l?) me(Q)‘

— reference set R(p): I-nearest neighbors of p using simgyy

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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Subspace Outlier Detection

2-d sample data,
comparison to
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 Gaussian distribution in 3 dimensions, 20 outliers
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[ABD+08]: Robust clustering in arbitrarily oriented subspaces
(SDM 2008) (extended version: [ABD+08a])

 Algorithm CASH: Clustering in Arbitrary Subspaces based
on the Hough-Transform

e Hough-transform:
— developed in computer-graphics
— 2-dimensional (image procesing)
« CASH:

— aeneralization to d-dimen<ional enacec
vvl INZI CALI&E-CVARLINL ] W\ 1 NATTTINZIL IVWVIND TGAL

ur.luuvu

— transfer of the clustering to a new space (“Parameter-space” of the
Hough-transform)

— restriction of the search space (from innumerable infinite to O(n!))
— common search heuristic for Hough-transform: O(29)
— efficient search heuristic

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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.+ given: DcR?
 find linear subspaces accommodating many points

« |ldea: map points from data space (picture space) onto
functions in parameter space

v o5
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* e, 1 <1 <d: orthonormal-basis

* X =(x,...,X,)": d-dimensional vector onto hypersphere around
the origin with radius r

* u; unit-vector in direction of projection of x onto subspace
span(e,...,e,)

* a4...,044 o;angle between u;and g,

) °COS(0(Z.)

o;=0
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Subspace Clustering

MU

Lengthd of the normal vector §- 7 with [i|=1 and angles

a4, ..., 044 for the line through point p:

fp(al9"'9ad—l):<p9n>:

_J"’ &
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* Properties of the transformation
— Point in the data space = sinusoidal curve in parameter space
— Point in parameter space = hyper-plane in data space

— Points on a common hyper-plane in data space = sinusoidal curves through a
common point in parameter space

— Intersections of sinusoidal curves in parameter space = hyper-plane through
the corresponding points in data space
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47

* dense regions in parameter space | | | T
< linear structures in data space .| -
(hyperplanes with 4 <d-17) o CL e

e exact solution: find all intersection 7 .
points o et

— infeasible | et ]

— too exact : : |
» approximative solution: grid-based °| o me

clustering in parameter space | SR

— find grid cells intersected by at | ) S

least m sinusoids

— search space bounded but in O(r9) X
— pure clusters require large value forr |~ dense region ===
. . i cluster C1 dense region R

(grld SO|Ut|On) v cluster C2 0N
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efficient search heuristic for dense regions in parameter space

« construct a grid by recursively splitting the parameter space (best-first-
search)

 identify dense grid cells as intersected by many parametrization functions
« dense grid cell represents (d-7)-dimensional linear structure

« transform corresponding data objects in corresponding (d-7)-dimensional
space and repeat the search recursively
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Subspace Clustering

 grid cell representing less than m points can be excluded

— early pruning of a search path

 grid cell intersected by at least m sinusoids after s recursive

splits represents a correlation cluster (with 4 <d-7)

— remove points of the cluster (and corr. sinusoids) from remaining cells

Zimek: Data Mining and the 'Curse of Dimensionality’ (iDB Workshop 2011)
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« search heuristic: linear in number of points, but ~ O(d°)
depth of search s, number c¢ of pursued paths (ideally: ¢ cluster):
— priority search: O(s-c)
— determination of curves intersecting a cell: O(n-d°)

runtime [sec]

— overall: O(s-¢cn-d°
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« stability with increasing number of noise objects
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The curse of dimensionality does not count in general as an

excuse for everything — depends on the number and nature
of distributions in a data set

the nature of each particular problem needs to be studied in
its own

part of the curse: it's always different than expected

iIf you ever think, you have solved the problems of the curse:
watch out for the curse striking back!



do not take everything for granted which is stated in the
literature

consider claims in the literature:
— is there enough evidence to support the claims?
— is the interpretation of the claims clear?
— challenge them or support them

papers report the strengths — you should try to find out the
weaknesses and to improve

have fun!
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