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Abstract

Outlier scores provided by different outlier models differ
widely in their meaning, range, and contrast between
different outlier models and, hence, are not easily
comparable or interpretable. We propose a unification
of outlier scores provided by various outlier models and
a translation of the arbitrary “outlier factors” to values
in the range [0, 1] interpretable as values describing the
probability of a data object of being an outlier. As
an application, we show that this unification facilitates
enhanced ensembles for outlier detection.

1 Introduction

An outlier could be generally defined as being “an ob-
servation (or subset of observations) which appears to be
inconsistent with the remainder of that set of data” [6].
How and when an observation qualifies as being “incon-
sistent” is, however, not as generally defined and differs
from application to application as well as from algo-
rithm to algorithm. From a systematic point of view,
approaches can be roughly classified, e.g., as global ver-
sus local outlier models. This distinction refers to the
scope of a database being considered when a method de-
cides on the “outlierness” of a given object. Or we can
distinguish supervised versus unsupervised approaches.
In this paper, we focus on unsupervised outlier detec-
tion. One can also discern between labeling and scor-
ing outlier detection methods. The former are leading
to a binary decision of whether or not a given object
is an outlier whereas the latter are rather assigning a
degree of outlierness to each object which is closer to
the original statistical intuition behind judging on the
outlierness of observations. If a statistical test quali-
fies a certain threshold, a hard decision (or label) for a
given observation as being or not being an outlier could
be derived. As we will discuss in this study, however,
the data mining approaches to outlier detection have
moved far from the original statistical intuition during
the last decade. Eventually, any outlier score provided
by an outlier model should help the user to decide on the
actual outlierness. For most approaches, however, the

outlier score is not easily interpretable. The scores pro-
vided by varying methods differ widely in their scale,
their range, and their meaning. While some methods
provide probability estimates as outlier scores (e.g. [31]),
for many methods, the scaling of occurring values of the
outlier score even differs within the same method from
data set to data set, i.e., outlier score x in one data set
means, we have an outlier, in another data set it is not
extraordinary at all. In many cases, even within one
data set, the identical outlier score x for two different
database objects can denote substantially different de-
grees of outlierness, depending on different local data
distributions. Obviously, this makes the interpretation
and comparison of different outlier detection models a
very difficult task. Here, we propose scaling methods for
a range of different outlier models including a normal-
ization to become independent from the specific data
distribution in a given data set as well as a statisti-
cally sound motivation for a mapping the scores into
the range of [0, 1], readily interpretable as the proba-
bility of a given database object for being an outlier.
The unified scaling and better comparability of differ-
ent methods could also facilitate a combined use to get
the best of different worlds, e.g. by means of setting up
an ensemble of outlier detection methods.

In the remainder, we review existing outlier de-
tection methods in Section 2 and follow their devel-
opment from the original statistical intuition to mod-
ern database applications losing the probabilistic inter-
pretability of the provided scores step-by-step. In Sec-
tion 3, we introduce types of transformations for se-
lected prototypes of outlier models to a comparable,
normalized value readily interpretable as a probability
value. As an application scenario, we discuss ensem-
bles for outlier detection based on outlier probability
estimates in Section 4. In Section 5, we show how the
proposed unification of outlier scores eases their inter-
pretability as well as the comparison and evaluation of
different outlier models on a range of different data sets.
We will also demonstrate the gained improvement for
outlier ensembles. Section 6 concludes the paper.

to appear at: 11th SIAM International Conference on Data Mining (SDM), Mesa, AZ, 2011



2 Survey on Outlier Models

2.1 Statistical Intuition of Outlierness We are
primarily interested in the nature and meaning of out-
lier scores provided by unsupervised scoring methods.
Scores are closer than labels to discussing probabilities
whether or not a single data point is generated by a
suspicious mechanism. Statistical approaches to outlier
detection are based on presumed distributions of ob-
jects relating to statistical processes or generating mech-
anisms. The classical textbook of Barnett and Lewis [6]
discusses numerous tests for different distributions de-
pending on the expected number and location of out-
liers. A commonly used rule of thumb is that points
deviating more than three times the standard deviation
from the mean of a normal distribution are considered
outliers [27]. Problems of these classical approaches are
obviously the required assumption of a specific distri-
bution in order to apply a specific test. There are tests
for univariate as well as multivariate data distributions
but all tests assume a single, known data distribution
to determine an outlier. A classical approach is to fit a
Gaussian distribution to a data set, or, equivalently, to
use the Mahalanobis distance as a measure of outlier-
ness. Sometimes, the data are assumed to consist of k
Gaussian distributions and the means and standard de-
viations are computed data driven. However, mean and
standard deviation are rather sensitive to outliers and
the potential outliers are still considered for the compu-
tation step. There are proposals of more robust estima-
tions of these parameters, e.g. [19,45], but problems still
remain as the proposed concepts require a distance func-
tion to assess the closeness of points before the adapted
distance measure is available. Related discussions con-
sider the robust computation of PCA [14, 30]. Variants
of the statistical modeling of outliers have been pro-
posed in computer graphics (“depth based”) [25,46,51]
as well as databases (“deviation based”) [4, 48].

2.2 Prototypes and Variants The distance-based
notion of outliers (DB-outlier) may be the origin of de-
veloping outlier detection algorithms in the context of
databases but is in turn still closely related to the statis-
tical intuition of outliers and unifies distribution-based
approaches under certain assumptions [27, 28]. The
model relies on two input parameters, D and p. In a
database D, an object x ∈ D is an outlier if at least a
fraction p of all data objects in D has a distance above
D from x. By definition, the DB-outlier model is a la-
beling approach. Adjusting the threshold can reflect the
statistical 3 · σ-rule for normal distributions and simi-
lar rules for other distributions. Omitting the threshold
p and reporting the fraction px of data objects o ∈ D
where dist(x, o) > D results in an outlier score for x in

the range [0, 1]. The model is based on statistical rea-
soning but simplifies the approach to outlier detection
considerably, motivated by the need for scalable meth-
ods for huge data sets. This, in turn, inspired many new
outlier detection methods within the database and data
mining community over the last decade. For most of
these approaches, however, the connection to a statisti-
cal reasoning is not obvious any more. Scoring variants
of the DB-outlier notion are proposed in [3,8,29,40,43]
basically using the distances to the k-nearest neighbors
(kNNs) or aggregates thereof. Yet none of these vari-
ants can as easily translate to the original statistical
definition of an outlier as the original DB-outlier no-
tion. Scorings reflect distances and can grow arbitrar-
ily with no upper bound. The focus of these papers
is not on reflecting the meaning of the presented score
but on providing more efficient algorithms to compute
the score, often combined with a top-n-approach, inter-
ested in ranking outlier scores and reporting the top-n
outliers rather than interpreting given values. Density-
based approaches introduce the notion of local outliers
by considering ratios between the local density around
an object and the local density around its neighboring
objects. The basic local outlier factor (LOF) assigned
to each object of the database D denotes a degree of
outlierness [9]. The LOF compares the density of each
object o ∈ D with the density of its kNNs. A LOF
value of approximately 1 indicates that the correspond-
ing object is located within a region of homogeneous
density. The higher the LOF value of an object o is,
the higher is the difference between the density around
o and the density around its kNNs, i.e., the more dis-
tinctly is o considered an outlier. Several extensions of
the basic LOF model and algorithms for efficient (top-
n) computation have been proposed [22, 23, 49, 50] that
basically use different notions of neighborhoods. The
Local Outlier Integral (LOCI) bases on the concept of a
multi-granularity deviation factor and ε-neighborhoods
instead of kNNs [39]. The resolution-based outlier fac-
tor (ROF) [16] is a mix of the local and the global out-
lier paradigm based on the idea of a change of resolu-
tion, i.e., the number of objects representing the neigh-
borhood. As opposed to the methods reflecting kNN
distances, in truly local methods the resulting outlier
score is adaptive to fluctuations in the local density and,
thus, comparable over a data set with varying densities.
The central contribution of LOF and related methods is
to provide a normalization of outlier scores for a given
data set. Recently, this notion of normalized local out-
lierness has been also merged with the distance-based
notion of outliers, resulting in the local distance-based
outlier detection approach LDOF [58]. Adaptations to
high dimensional data are, e.g., [12, 32]. The outlier
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Figure 1: Deteriorating interpretability of outlier scores for recent methods. For the data depicted in (a), the
histograms (b)–(f) show bins of similar outlier scores of different algorithms along the x-axis and the relative
number of objects in each bin along the y-axis.

score ABOD [33] is not primarily based on conventional
distance measures. It assesses the variance in angles be-
tween an outlier candidate and all other pairs of points.
Its relationship to other outlier models is unclear. Since
the variance of angles is lower for outliers than for in-
liers, ABOD is an example where, as opposed to many
other methods, the higher score reflects a lower outlier-
ness.

2.3 Rise and Decline of Outlier Models While
outlier detection algorithms became ever more sophis-
ticated and efficient during the last decade of research
e.g. in terms of providing the top-n outliers ever faster,
less diligence has been invested in the meaning and com-
parability of the scores provided by the different meth-
ods. In Figure 1, we observe some interesting trends
for several state-of-the-art methods of outlier detection.
For a simple 2-d data set containing a large bivariate
normal distribution (inliers) and a small but wider uni-
form distribution responsible for outliers (Fig. 1(a)), a
simple statistical method is fitting a Gaussian model
and deriving linearly inverted probability density val-
ues, sketched in Fig. 1(b) as a histogram. Many points
show values between 0 and 0.9 corresponding to the dis-
tance from the mean. The relative gap between 0.9 and
1 reflects the spatial gap between the points truly gener-
ated by a Gaussian model and the outer rim of sparsely
distributed points from the uniform distribution which

attract an outlier probability of 1. While DB-Outlier
scores [28] and reference-based outlier scores [40] are
both normalized scorings in the range [0, 1] (the latter
assessing approximately k-NN distances and normaliz-
ing the obtained values for a data set), their distribu-
tion is rather different (Fig. 1(c)). A gap between an
outlier score 0.9 and 1 is still visible for DB-Outlier
but its size and distinctiveness is diminished consider-
ably. Also, there are no true inlier probabilities for DB-
Outlier. For the k-NN distances based outlier factor,
the scale is not normalized anymore and in its scaling
it is actually highly sensible to the data distribution
and dimensionality at hand since it merely reflects oc-
curring distances. There is no gap observable anymore,
but scores for outliers are more and more increasing
with no hint whatsoever which score is large enough to
characterize an outlier. For LOF [9], LDOF [58], and
LOCI [39] (Fig. 1(e)), the scale of outlier scores is also
dependent on the given data distribution though the
scores are locally adaptive and the authors proposed a
typical inlier value (1, 0.5, and 0, for LOF, LDOF, and
LOCI, respectively). While outliers generally attract
higher scores, and the typical inlier values are abun-
dantly occurring, there is once more no gap contrasting
between still-inlier and already-outlier values. Finally,
the range for ABOD [33] is 0 (corresponding to out-
liers) up to over 80, 000. Again, although the ranking
is viable, no contrast between inlier scores and outlier



scores is visible and hence the user does not have any
clue which score was small enough to label an outlier.

A reason that all these aspects have not gained
much attention so far might be that outlier detection
methods usually have been evaluated in a ranking
setting (“give me the top-n outliers”). This, however, is
an unrealistic or at least unsatisfactory scenario in many
applications since it requires exact knowledge on the
number of outliers in a data set in order to retrieve all
and only outliers, especially if there is no distinguished
gap between outlier scores and inlier scores.

2.4 Summary Outlier detection methods are based
on quite different assumptions, intuitions, and models.
They naturally also differ substantially in the scaling,
range, and meaning of values, and they are differently
well suited for different data sets. Their results, how-
ever, are in many cases very difficult to compare. Oppo-
site decisions on the outlierness of single objects may be
equally meaningful since there is no generally valid def-
inition of what constitutes an outlier in the first place.
For different applications, a different selection of outlier
detection approaches may be meaningful. The develop-
ment of methods within the database and data mining
community, triggered by Knorr and Ng, was focussed
on efficiency rather than on interpretability. As a conse-
quence, these methods usually are not able to translate
their scoring result into a label. There is usually no clear
decision boundary which score is generally sufficient to
designate any data point as an outlier (as opposed to
the 3 · σ-rule-of-thumb in a statistical context). Here,
we try to reestablish a genuine interpretability of outlier
“scores” for some methods exemplary for the different
families of outlier models.

3 Unifying Outlier Scores

The fundamental motivation for a re-scaling of outlier
scores is to establish sufficient contrast between outlier
scores and inlier scores, inspired by Hawkins [20]: “a
sample containing outliers would show up such charac-
teristics as large gaps between ‘outlying’ and ‘inlying’
observations and the deviation between outliers and the
group of inliers, as measured on some suitably standard-
ized scale”. As shown above, existing outlier scores of-
ten lack this contrast between outliers and inliers, i.e.,
there is usually no clear gap between the scores of out-
liers and inliers. Beside a poor semantic of the provided
scores it becomes hard for the user to differentiate be-
tween objects from both classes. The above typification
of outlier models and the respective meaning of resulting
outlier scores (cf. Section 2) facilitates types of functions
to transform an outlier score to a comparable, normal-
ized value or even to a probability value. For example,

the scorings of LOF and LDOF share a similar mean-
ing and, thus, can be transformed by similar functions.
The DB-Outlier labeling can be translated into a scor-
ing approach directly resulting in a score in the range
[0, 1]. Scores reaching infinity (either as maximal out-
lier score or as maximal inlier score) require more com-
plex considerations for transformation. For example,
the normalization procedure applied to k-NN score ap-
proximations in the reference points approach [40] does
not result in good contrast of outlier scores vs. inlier
scores (see Fig. 1(c)). Instead, it is just a scaling onto
the range [0, 1]. For scores with extremely low numeric
contrast we therefore consider functions to stretch in-
teresting ranges while shrinking irrelevant regions.

3.1 A General Procedure for Normalizing Out-
lier Scores Based on the above considerations, we will
first derive a general framework for transforming outlier
scores to a comparable, normalized value or even to a
probability value. After that, we sketch how this frame-
work can be implemented for existing outlier scores.
The anticipated minimum requirements of the result-
ing score are regularity and normality. An outlier score
S is called regular if S(o) ≥ 0 for any object o, S(o) ≈ 0
if o is an inlier, and S(o) � 0 if o is an outlier. An
outlier score S is called normal if S is regular and the
values are restricted by S(o) ∈ [0, 1]. Many outlier
scores are already regular and/or normal. For exam-
ple, probability based outlier scores obviously are al-
ready normal. Others will require slight adjustment or
larger transformation for regularity. A transformation
that yields a regular (normal) score is called regular
(normal). An important property of transformations
is that they should not change the ordering obtained
by the original score. Formally we require that for any
o1, o2 : S(o1) ≤ S(o2) ⇒ TS(o1) ≤ TS(o2). Alterna-
tively, for inverted scores, it is also admissible to have
for any o1, o2 : S(o1) ≤ S(o2) ⇒ TS(o1) ≥ TS(o2). A
transformation that either fulfills the first or the second
equation is called ranking-stable. Note that this does
permit S(o1) < S(o2) ∧ TS(o1) = TS(o2). This is inten-
tional since we do accept some loss in information for
inliers (where the ranking information is not interesting)
if that helps increasing the contrast for outliers.

We consider formally two steps in the process of
unification of scores, where either step may be optional
(depending on the score S): (i) A regularization Reg
basically transforms a score S onto the interval [0,∞)
such that RegS(o) ≈ 0 for inliers and RegS(o) � 0 for
outliers. We propose different regularization procedures
for different types of scores in Section 3.2 depending on
their original domains. (ii) A normalization basically
transforms a score into the interval [0, 1]. We propose



different normalization procedures in Section 3.3. Both,
regularizations and normalizations, can be used to
enhance the contrast between inliers and outliers. Some
normalizations will require a regularized score to work
with, while others do not have this requirement but
may still perform better if the data was regularized
beforehand. Hence, it can even be beneficial to apply
a normalization to an already normal score, if the
normalization stretches interesting regions and shrinks
irrelevant intervals.

3.2 Regularization Different scores need different
transformations to become regular. In the following, we
outline regularization procedures for different classes of
outlier scores

3.2.1 Baseline Regularization The local outlier
scores LOF, LDOF, and their variants are not yet
regular, since the expected value for non-outliers is not
0. In case of LOF and its variants, the expected inlier
value is baseLOF = 1. For LDOF the expected inlier
score is baseLDOF = 1

2 . The expected outlier score
is � base in both cases. These scores can however
be regularized with a very simple transformation. Let
baseS be the baseline (expected inlier value) of the
outlier score S. The idea for a regular transformation
is to take the difference of the observed value S(o)
of an object o and the baseline value baseS . This
transforms any interval [base,∞) to the interval [0,∞).
Since the considered scores may also produce scores
that are smaller than baseS indicating also inliers, we
need some adjustment not to get negative scores after
transformation:

RegbaseS

S (o) := max{0, S(o)− baseS}.

This regularization is ranking-stable:

S(o1) ≤ S(o2)⇔ S(o1)− baseS ≤ S(o2)− baseS

⇒ max{0, S(o1)− baseS} ≤ max{0, S(o2)− baseS}
⇔ RegbaseS

S (o1) ≤ RegbaseS

S (o2).

In other words, if o1 has a lower score than o2 which
means o1 is less an outlier than o2 for LOF, its variants
and LDOF, then it cannot have a higher score after a
baseline regularization. Note that for S(o1) < S(o2) <
baseS we lose information, since RegbaseS

S (o1) = 0 =
RegbaseS

S (o2), but this is intentional. It is also easy to see
that this regularization does not enhance the contrast
between inlier and outlier scores.

3.2.2 Linear Inversion In some outlier models,
high scores are inliers. For example, when using the
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Figure 2: ABOD scores, after logarithmic inversion

density function of a Gaussian model, high density iden-
tifies inliers, while a density close to 0 indicates outliers.
To regularize such models, we need to invert them. For
that purpose, we simply take the difference between the
observed score S(o) and the maximum possible (or ob-
served) score Smax.

ReglininvS (o) := Smax − S(o).

Since Smax ≥ S(o), this transformation is regular.
Ranking-stability for inverted scores can also easily
be shown: S(o1) ≤ S(o2) ⇔ −S(o1) ≥ −S(o2) ⇔
ReglininvS (o1) ≥ ReglininvS (o2). It is also easy to see
that this regularization does not enhance the contrast
between inlier and outlier scoring.

3.2.3 Logarithmic Inversion A simple linear inver-
sion as mentioned above is not appropriate for algo-
rithms with very low contrast such as ABOD. A more
useful regularization for ABOD that also addresses the
enhancement of contrast between inliers and outliers
uses the logarithm function:

RegloginvS (o) := − log(S(o)/Smax).

Note that this regularization is only defined if S(o) > 0
for all objects o and Smax finite. ABOD is such a
score that produces only positive values greater than
zero; there is no upper bound so we have to choose
Smax from the occurring scores. Since the logarithm
is a monotone function, the logarithmic inversion is
ranking-stable. As it can be seen in Fig. 2, this
regularization can significantly increase the contrast
(compare to Fig. 1(f)).

3.3 Normalization The simplest way of bringing
outlier scores onto a normalized scale is to apply a linear
transformation such that the minimum (maximum)
occurring score is mapped to 0 (1). A simple linear
normalization can be obtained by

Normlinear
S (o) :=

S(o)− Smin
Smax − Smin

.

Note that, if S is a regular or regularized score, Smin =
0 can be used to simplify the formula. Obviously,



this normalization does not add any contrast to the
distribution of scores. Thus, here we study possibilities
to enhance the contrast between inliers and outliers
based on some exemplary statistical scaling methods
and, hence, motivating a probabilistic interpretability
of the unified scores.

3.3.1 Statistical Scaling of Outlier Scores Out-
lier scores usually are not equally distributed in their
value range but follow a much more complex distribu-
tion which is hard to grasp analytically, and many as-
sumptions have to be made to get a reliable result. In
particular, when one has to assume that the data set
is composed out of multiple clusters and noise distri-
butions, a purely analytical analysis is infeasible. Even
a single multidimensional normal distribution already
poses the challenge, that there is no known closed form
solution for its cumulative distribution function. The
nature of many outlier scores depending on kNNs and
even “kNNs of kNNs” like in the LOF model makes even
data based on strong assumptions intractable. Instead
it becomes much easier to analyze the actual score dis-
tribution on the data set without assuming anything on
the distribution of the data. Note that the linear scal-
ing proposed above can be interpreted as assuming a
uniform distribution of the outlier scores. However, in
order to avoid overfitting it seems advisable to choose
a primitive distribution function with limited degrees
of freedom that is fit to the observed outlier scores.
Here we propose several normalization functions that
are based on such distribution functions. It should be
again pointed out that we do not draw any assumptions
on the distribution of the data but on the distribution of
the derived outlier scores. Let us note that any distribu-
tion function can be used for this purpose analogously,
depending on how well it is fitting to the distribution
of the derived outlier scores. The intuition of this ap-
proach is the following: we do not have a direct way to
interpret the score, we instead evaluate how “unusual”
the score of a point is, using the algorithms output score
as a one-dimensional feature projection of the data.

We chose Gaussian and Gamma distributions as
examples. However, the same method can be applied
to any other distribution function. For ratio-based al-
gorithms such as LOF and LDOF, ratio distributions
such as the Cauchy-distribution and F-distribution are
good candidates. ABOD scores, after the logarithmic
inversion, on the other hand appear to be normally dis-
tributed. For example, Figure 2 shows the regularized
but not yet normalized scores of ABOD on the data set
from Figure 1. The optimal choice of distribution de-
pends on the algorithm, and maybe also on the data
set. As such we will not give optimal distributions for

any algorithm here, but we will show in the experiments
that the choice of an arbitrary distribution already of-
fers significantly improved performance.

3.3.2 Gaussian Scaling According to the central
limit theorem, the most general distribution for values
derived from a large number of similarly distributed
values is the normal distribution. Having just two
degrees of freedom (the mean μ and the standard
deviation σ) it is not susceptible to overfitting. Using
the known estimator functions μ̂ = E(S) and σ̂2 =
E(S2) − E(S)2, the parameters can be fit to the data
efficiently in a single pass. A more sophisticated fit can
be achieved by using the Levenberg-Marquardt method.
Given the mean μS and the standard deviation σS of the
set of derived values using the outlier score S, we can use
its cumulative distribution function and the “Gaussian
error function” erf() to transform the outlier score into
a probability value:

Normgauss
S (o) := max

{
0, erf

(
S(o)− μS

σS ·
√
2

)}
.

Note that the same value can be obtained by linear
regularization of the cumulative distribution function:

cdf gaussS (o) :=
1
2

(
1 + erf

(
S(o)− μS

σS ·
√
2

))
.

Using the mean μcdf = cdf gaussS (μS) = 1
2 and maxcdf = 1

it follows that

max
{
0,

cdf gaussS (o)− μcdf
maxcdf−μcdf

}

= max {0, 2 · cdf gaussS (o)− 1} = Normgauss
S (o).

Since the Error Function erf() is monotone it is ranking-
stable.

If the algorithm the normalization is applied to has
known characteristics, we can also use other estimators
for μ or σ. Comparable to the baseline approach above,
let μS = baseS and σ2S = 1

|S|
∑
(S(o)− baseS)2. We call

such an approach customized Gaussian scaling. Note
that the use of such a different base essentially assumes
that the scores should be distributed with the given
parameters. For LOF, LDOF, or LOCI, assuming a
Gaussian distribution around the corresponding values
of base does show nearly the same performance as a not
customized Gaussian scaling. These results suggest that
the values of base given by the authors of LOF, LDOF,
or LOCI are actually rather appropriate.

3.3.3 Gamma Scaling The assumption of a Gaus-
sian distribution works quite well in particular in



high dimensionality. However, the histograms of low-
dimensional kNN and LOF scores rather resemble a
Gamma distribution. Notice that the χ2 distribution
and exponential distributions are specializations of the
Gamma distribution: χ2(ν) ∼ Γ(k = ν/2, θ = 2) and
Exp(λ) ∼ Γ(k = 1, θ = 1/λ).

We can estimate the parameters of the Gamma
distribution Γ(k, θ) with shape k and Gamma mean θ
using the estimators μ̂ and σ̂ as above and then using
the moment estimators k̂ := μ̂2

σ̂2 and θ̂ := σ̂
μ̂2 . Note that

we need μ 
= 0 for this to be well-defined which is a
reasonable assumption in most cases. The cumulative
density function is given by

cdf gammaS (o) :=
γ(k, S(o)/θ)

Γ(k)
= P (k, S(o)/θ),

where P is the regularized Gamma function.
Similar to the Gaussian normalization, we use

Normgamma
S (o) := max

{
0,

cdf gammaS (o)− μcdf
1− μcdf

}
,

where μcdf = cdf gammaS (μS).
Having transformed the scores of quite different

outlier models to a range of [0, 1] does not yield a
unified meaning of these scores. If interpreted as
probability of being an outlier, each model still yields
this probability value under certain assumptions that
constitute the specific outlier model. Nevertheless, the
level of unification yielded by the above transformations
improves the comparability of the decisions of different
approaches.

4 Application Scenario: Outlier Ensembles

4.1 Outlier Ensemble Approaches Building en-
sembles of outlier detection methods has been proposed
occasionally [17,34,38], i.e., building different instances
of outlier detection algorithms (called “detectors”) for
example by different parametrization, using different
subspaces, or actually using different algorithms and
combining the outlier scores or ranks provided by the
different detectors somehow. The first approach [34]
proposes to combine detectors used on different sub-
spaces of a data set. Two combination methods have
been discussed, namely breadth-first and cumulative
sum. The breadth-first method is purely based on the
ranks of the data objects provided by the different de-
tectors. A combined list sorted according to their ranks
in different detectors is created by merging the rank
lists provided by all detectors. The cumulative sum ap-
proach provides the sum of all outlier scores provided by
detectors for a data object as the object’s new outlier
score and re-ranks the data objects according to this

new score. Although the paper pretends to provide a
framework for the combination of actually different al-
gorithms, this is questionable for the cumulative sum
approach. Indeed, the paper presents results based on
combinations of different instances of LOF only. While
the breadth-first method does not actually compare dif-
ferent outlier scores, the cumulative sum would not be
suitable to combine scores of largely different scales (let
alone inverted scores). An improvement has been pro-
posed by [17], utilizing calibration approaches (sigmoid
functions or mixture modeling) to fit outlier scores pro-
vided by different detectors into probability values. The
combination of probability estimates instead of mere
ranks is demonstrated in [17] to slightly improve on
the methods of [34]. Notably, although their method
should theoretically be applicable to combine different
outlier detection algorithms, their experiments demon-
strate the combination of different values for k of the
kNN distance as an outlier score only. Note that the
sigmoid learning and mixture model fitting approaches
proposed for calibration in [17] are based on the general-
ized EM algorithm and are rather unstable. In addition,
they favor extreme values (0 and 1), which is not favor-
able for combination, but degenerates to counting and
boolean combinators. The recent approach proposed
in [38] eventually addresses the combination of actually
different methods more explicitly. The scores provided
by a specific algorithm are centered around their mean
and scaled by their standard deviation, hence not in-
terpretable as probability estimates and possibly still
different in scale for different methods. As combina-
tion method, [38] propose weighting schemes trained in
a semi-supervised manner similar to the training proce-
dure described in [1]. But for an unsupervised scenario,
an unweighted combination should still be admissible.
To induce diversity among different detectors, [38] fol-
low the feature bagging approach of [34].

4.2 Combining Different Outlier Methods Our
unification approach to outlier scores combines the ad-
vantages of the previous methods while avoiding their
pitfalls. We transform outlier scores of arbitrary meth-
ods into probability estimates (as we will demonstrate
below, improving on the approaches proposed in [17])
and hence allow for a more stable and also more mean-
ingful combination of arbitrary outlier detection meth-
ods in a completely unsupervised manner (improving
on [34, 38]). As a simple demonstration of the applica-
bility of our unification of outlier scores and the gained
improvement in outlier ranking quality, we propose to
construct an ensemble out of instances of arbitrary, dif-
ferent outlier detection algorithms and use the probabil-
ity estimate produced by our method out of the outlier



score directly as a weight in the combination. As a re-
sult, we predict the probability estimate averaged over
all ensemble members, i.e., for a data object o, a se-
lection OD of instances of outlier detection algorithms
and for each element ODi ∈ OD some function probODi

,
mapping an outlier score Si provided by ODi to a prob-
ability value using a normalization suitable for ODi, as
discussed in Section 3, we obtain as ensemble outlier
score:

P (o) =
1

|OD|
∑

ODi∈OD

probODi
(Si(o))

This is a rather simple, baseline scheme. Obviously,
there are many other combinations possible that make
more use of the probabilistic interpretation.

5 Evaluation

A bigger advance than “yet another outlier model” is a
way to the unification of the variety of existing outlier
models since this opens up possibilities of comparison
or even combination of different methods. In Section 3,
we presented some first steps towards this goal. Here,
we are however not interested in evaluating the different
methods for outlier detection or ensemble construction
(which would be far beyond the scope of this study)
but in evaluating the increase in usability of different
methods that can be gained by applying our unification
approach. The evaluation of this unification irrespec-
tive of the underlying methods is not straightforward.
Displaying ROC curves or ROC AUC values would not
make sense since the transformations generally do not
affect the ranking. We will discuss how to evaluate the
unification of scores (motivated as probability estima-
tions) meaningfully (Section 5.1), and subsequently pro-
vide a broad range of corresponding experiments (Sec-
tion 5.2). Finally, we will also evaluate the application
scenario sketched in Section 4 incorporating the unified
scores into simple ensemble approaches to outlier detec-
tion (Section 5.3), as a proof of principle. All proposed
methods and the competitors have been implemented in
the framework ELKI [2].

5.1 Evaluating Probability Estimates The con-
cept of calibration has been used to assess the reliability
of probability estimates or confidence values in classifi-
cation. An optimally calibrated prediction algorithm
is expected to be correct in a portion x of all predic-
tions that are subject to a confidence value of x [10].
Obtaining more or less well calibrated probability es-
timates has gained a lot of attention in the context of
classification (e.g. [41,42,56,57]). Here, in the unsuper-
vised context of outlier detection, we propose the first
approach to reconvert plain outlier scores roughly into

probability estimates as a motivation for the unification
and interpretation of scores. In an unsupervised set-
ting, however, previous approaches cannot be pursued
since one cannot learn or fit a mapping but has to as-
sume certain properties for a certain outlier algorithm.
We can however assess typical distributions of outlier
scores (as surveyed above) and propose suitable scal-
ing methods to convert outlier scores into probability
estimates though not optimized and thus not perfectly
calibrated for each data set. In general, the pure con-
cept of calibration is questionable anyway [13, 37, 55].
Here, however, our goal is not perfect calibration but
improved interpretability of scores by an improved con-
trast between outlier scores (i.e., high outlier probabil-
ity) and inlier scores (i.e., low outlier probability). This
relates to the concept of refinement or sharpness, i.e.,
the forecast probabilities should be concentrated near
1 and near 0 (still being correlated with the actual oc-
currence of the forecast event) [13, 47]. It should be
noted, though, that there may be cases of intermedi-
ate outlier probabilities. If these are indeed borderline
cases requiring closer inspection, to assign an interme-
diate probability estimate to these data objects may be
desirable. In the classification area, abstaining classi-
fiers are adequate in such cases (see e.g. [41]). In the
outlier detection area, this problem has not found much
attention in recent methods but is the genuine merit of
the original statistical approaches [6, 20].

An important difference between the probability es-
timation of outliers and of classes is the inherently im-
balanced nature of the outlier detection problem. Since
the data are largely dominated by the class of inliers
and only a minimal number of data objects are truly
outliers, assessing the root mean squared error in reli-
ability as deviation of the probability estimates vs. the
observed frequency (as e.g. in [37], for different classical
evaluation measures see [36]) is not directly applicable
to the scenario of outlier probability estimates. Any
outlier detection procedure always estimating a zero (or
a very small) outlier probability would already be al-
most perfectly calibrated. Optimal calibration can be
achieved by merely estimating the proportion of outliers
in a data set instead of assessing the outlierness of single
data objects. In the supervised context of classification,
much effort has been spent on methods of sanitizing im-
balanced class prior probabilities for training as well as
for evaluation of classifiers [7,24,44,53]. Closely related
to the problem of imbalanced classes are cost sensitive
learning [11, 54] and boosting [26]. Applying a cost-
model to a prediction task means that errors are differ-
ently penalized for different classes during the learning
procedure. Different costs for different types of error
are a quite realistic scenario. What truly counts is not



the optimally calibrated probability estimation but the
minimized costs of a decision (in the decision-theoretic
sense of [52], see also [35]), where the decision, of course,
is based on the estimated probability. Instead of costs,
the expected utility could also be modeled, or both, util-
ity and costs. While in supervised scenarios classifiers
can be optimized w.r.t. a certain cost model [15, 56],
in the unsupervised scenario of outlier detection, the
assumed cost-model cannot be used to fit or train the
algorithm but only to evaluate its results. It should be
noted, though, that while calibration and purely calibra-
tion related scores in itself are not a sufficient evaluation
measure, a useful cost-model-based evaluation of deci-
sions will also encourage calibration [55]. In the context
of imbalanced classes, it is customary to either sample
the small class up, to sample the large class down, or
to alter the relative costs according to the class sizes.
In [21], the latter has been shown to be generally more
effective than the alternatives. Hence we adopt this pro-
cedure here, though, since we tackle outlier detection as
an unsupervised task, not for adapting a training proce-
dure to differently weighted misclassification costs but
merely to evaluate the impact of a probabilistic scaling
and regularization of outlier scores. Aside from a quan-
titative improvement, the major motivation for such a
probabilistic scaling is to revert the more and more de-
teriorated interpretability of modern outlier detection
methods into a statistically interpretable context.

In summary, we transfer the experiences with
(i) probability estimates, (ii) imbalanced classification
problems, and (iii) cost-sensitive learning reported in
the context of supervised learning to the context of un-
supervised outlier detection. Hence, we assess the im-
pact of our transformation methods for outlier scores
w.r.t. the reduction of error-costs, taking into account
the different cardinality of the class of inliers I and the
class of outliers O. At the same time, to simultane-
ously account for calibration, we do not assess binary
decisions but multiply assigned probability estimates
with the corresponding costs. Since the costs for the
correct decisions are always 0, only errors account for
the reported values. The corresponding accuracy values
would be symmetric since the assigned probability es-
timates would just be the complementary probabilities
of the ones accounting for error costs. Formally, the
reported costs are for each dichotomous problem con-
sisting of classes I and O:

1
2

∑
x∈I

P (O|x) · 1|I| +
1
2

∑
x∈O

P (I|x) · 1
|O|

based on probability estimates P (C|x) for an object x
to belong to class C as provided by the (unified) outlier
score.

Table 1: Normal data, uniform noise
Lin LinM Gau GauC Γ Rank SigM MixM

Gaussian 31.6 18.8 25.1 36.6 26.6 25.1 28.8 51.5
kNN [43] 20.4 19.4 3.3 25.6 4.5 25.0 9.2 15.1
agg. kNN [3] 21.1 20.2 2.9 24.2 4.4 25.0 7.9 16.1
LDOF [58] 22.6 21.9 4.2 27.8 4.5 25.1 9.0 21.1
LOCI [39] 29.1 25.8 15.0 33.2 16.0 33.2 23.5 19.9
LOF [9] 21.6 21.4 2.3 6.0 2.9 25.0 5.6 11.8
Refer. [40] 33.8 14.4 19.5 39.4 21.0 25.8 26.9 48.4
DB-Out. [28] 10.1 10.1 2.4 10.8 4.8 25.2 3.4 18.5
ABOD [33] 24.0 n/a 7.4 n/a 8.5 25.0 n/a n/a

Table 2: Uniform data, uniform noise
Lin LinM Gau GauC Γ Rank SigM MixM

Gaussian 37.2 23.8 29.6 40.7 30.8 26.5 32.1 52.1
kNN [43] 26.5 24.7 8.9 37.5 9.4 26.3 14.8 28.6
agg. kNN [3] 26.9 25.2 8.1 36.1 8.7 26.1 14.5 27.5
LDOF [58] 28.9 27.7 8.9 34.5 9.2 26.0 12.8 27.8
LOCI [39] 37.1 29.9 24.0 41.2 25.1 33.4 33.1 37.2
LOF [9] 28.0 27.7 8.2 10.6 8.4 26.4 10.7 41.9
Refer. [40] 36.4 22.6 24.4 41.1 25.3 30.4 29.2 44.0
DB-Out. [28] 31.2 19.3 17.5 40.6 18.4 26.6 25.7 50.0
ABOD [33] 34.5 n/a 19.0 n/a 17.2 27.8 n/a n/a

5.2 Reduction of Error-Costs Artificial data sets
offer well-defined outliers, and are thus much easier to
evaluate. At the same time, there is a risk of overfitting
the algorithms (or in our setup, the normalizations)
to the idealized setting of artificial data. Real world
data on the other hand are hard to evaluate since it
is often impossible to decide whether or not a point
is an outlier. Real world data sets can contain points
with the same attribute values where one point is
marked as outlier and the other is not. This can be
due to measurement errors or incomplete data or even
misclassification. As such, it is impossible to achieve
“perfect” results on real data. It is best to think of real
data as containing outliers, some of which are known
and marked as interesting. An algorithm is working
well as long as it is reporting the interesting outliers
and not too many of the others.

5.2.1 Artificial Data The data sets we generated
contained uniformly or normally clustered data, along
with uniform background noise. We generated data
sets of 1, 2, 3, 5, 10 and 100 dimensions, and averaged
the results. The results were surprisingly stable except
for LOCI and DB-Outlier detection, which can be
attributed to their distance parameterization. We chose
k = 50 for all kNN-based algorithms, and a radius
dependant on the dimensionality for radius parameters
across algorithms. Since this choice was not optimized
for the individual algorithms, one should not compare
the values of different algorithms but rather one should
compare just the different normalizations of the same
algorithm. The results (in percent) for the normally
distributed data are shown in Table 1. Table 2 depicts



Table 3: PenDigits data set
Lin LinM Gau GauC Γ Rank SigM MixM

Gaussian 48.0 30.3 41.8 48.9 41.8 34.7 36.1 50.0
kNN [43] 30.9 30.0 12.0 34.5 13.0 26.7 18.7 24.3
agg. kNN [3] 30.4 29.3 11.0 33.7 11.6 25.9 18.4 18.6
LDOF [58] 46.3 47.0 38.8 45.7 38.9 39.6 35.0 46.2
LOCI [39] 40.9 39.2 22.8 40.0 24.3 30.0 26.2 51.0
LOF [9] 33.8 34.0 13.3 17.7 13.5 27.5 16.0 13.5
Refer. [40] 53.7 57.9 58.0 52.4 57.9 58.0 61.7 48.9
DB-Out. [28] 34.0 15.8 21.4 48.8 21.6 26.2 25.6 50.0
ABOD [33] 35.1 n/a 18.5 n/a 20.1 28.6 n/a n/a

Table 4: Wisconsin Breast Cancer data set
Lin LinM Gau GauC Γ Rank SigM MixM

Gaussian 48.3 35.0 46.5 49.0 46.4 29.1 40.5 65.6
kNN [43] 30.5 29.9 14.4 35.4 15.1 27.8 17.3 15.5
agg. kNN [3] 30.7 30.1 14.6 35.1 15.3 27.8 17.0 15.8
LDOF [58] 31.6 30.7 14.8 35.7 15.2 27.8 18.7 20.2
LOCI [39] 37.9 38.0 15.9 26.8 17.7 27.8 14.5 21.3
LOF [9] 29.8 29.8 14.1 18.7 14.5 27.7 16.4 13.9
Refer. [40] 39.3 23.9 27.4 43.2 28.4 30.7 30.1 52.0
DB-Out. [28] 19.0 14.3 13.9 28.7 15.7 27.8 17.9 26.5
ABOD [33] 28.2 n/a 14.0 n/a 15.8 27.3 n/a n/a

the results for the uniformly distributed data sets.
We compare different transformations, starting

with a simple linear scaling to the interval [0, 1] (“Lin”),
a linear baseline transformation with μS = baseS

(“LinM”), a Gaussian scaling (“Gau”), a customized
Gaussian scaling adjusting μS = baseS (“GauC”) and
a Gamma scaling (“Γ”). As comparison scalings we in-
clude a naive transformation that discards the actual
scores and just uses the resulting ranking (in [0, 1] and
denoted by “Rank”) and the normalizations introduced
by [17], namely Sigmoid fitting (“SigM”) and mixture
model fitting (“MixM”). In case of ABOD, we used
the log-regularization in combination with linear, Gaus-
sian, and Gamma scaling. As we do not want to com-
pare the different methods but only the transformations,
one should only compare different values from the same
row. It can be seen, that for all methods, most scal-
ing methods yield considerably better results (in terms
of decreased error costs) compared to the original score
(“Lin”). While the methods of [17] sometimes work
quite well, they have shown to be unreliable due to the
use of an EM-style model estimation. In particular the
mixture model (“MixM”) approach often converges to
a “no outliers” or “all outliers” model. The overall re-
sults also suggest that a Gaussian scaling is — although
not always the winner — a good choice. This demon-
strates that the application of our proposed unification
can clearly increase the usability of outlier scores.

5.2.2 Real Data To produce real-world data sets
for use in outlier detection, we chose two well-known
data sets from the UCI machine learning repository [5],
known as “Pen Digits” and “Wisconsin Breast Cancer”.

Table 5: Ensemble results
KDDCup1999 data set:
Ensemble construction ROC AUC Combination method
Feature Bagging LOF 0.7201 unscaled mean [34]
10 rounds, 0.7257 sigmoid mean [17]
dim ∈ [d/2 : d − 1], 0.7300 mixture model mean [17]
k = 45 0.7312 HeDES scaled mean [38]

0.7327 maximum rank [34]
0.7447 mean unified score

LOF [9] 0.6693 mixture model mean [17]
k = 20, 40, 80, 120, 160 0.7078 unscaled mean [34]

0.7369 sigmoid mean [17]
0.7391 HeDES scaled mean [38]
0.7483 maximum rank [34]
0.7484 mean unified score

Combination of 0.5180 mixture model mean [17]
different methods: 0.9046 maximum rank [34]
LOF [9], LDOF [58], 0.9104 unscaled mean [34]
kNN [43], agg.kNN [3] 0.9236 sigmoid mean [17]

0.9386 HeDES scaled mean [38]
0.9413 mean unified score

ALOI images with outliers:
Ensemble construction ROC AUC Combination method
Feature Bagging LOF 0.7812 mixture model mean [17]
10 rounds, 0.7832 sigmoid mean [17]
dim ∈ [d/2 : d − 1], 0.7867 maximum rank [34]
k = 45 0.7990 unscaled mean [34]

0.7996 HeDES scaled mean [38]
0.8000 mean unified score

LOF [9] 0.7364 mixture model mean [17]
k = 10, 20, 40 0.7793 maximum rank [34]

0.7805 sigmoid mean [17]
0.7895 HeDES scaled mean [38]
0.7898 unscaled mean [34]
0.7902 mean unified score

Combination of 0.7541 mixture model mean [17]
different methods: 0.7546 maximum rank [34]
LOF [9], LDOF [58], 0.7709 unscaled mean [34]
kNN [43], agg.kNN [3] 0.7821 sigmoid mean [17]

0.7997 mean unified score
0.8054 HeDES scaled mean [38]

To obtain outliers, one of the classes (corresponding to
the digit 4 and to malignant tumors) was down sampled
to 20 (Pen Digits) and 10 (Wisconsin) instances. This
approach was adopted from [58]. To obtain more statis-
tic reliability, we produced 20 random samples each,
and averaged the results on these data sets. For con-
trol purposes, the standard deviation was recorded and
is insignificant. Given that each of the classes in the
data can well contain their own outliers, and it is just
the down sampled class that we consider as interesting
outliers, it is not surprising that the best result still in-
curred error costs of 10 to 15 percent. The results on the
real world data sets are depicted in Table 3 (PenDigits)
and Table 4 (Wisconsin). Again it can be observed that
applying our transformations can considerably reduce
the error costs which indicates an improved usability
for discerning between outliers and inliers. In summary,
it can be observed on synthetic as well as real-world
data that our transformations work well. It is worth
noting that none of the distributions (uniform, Gaus-
sian, Gamma) assumed to model the values of the out-
lier scores is the winner in all experiments. However, it



is not the scope of this study to evaluate which distribu-
tion best fits which outlier score on which data settings.
Rather, we wanted to show that using any distribution-
based transformation can yield a significant boost in
accuracy compared to the original methods.

5.3 Improvement in Outlier Ensembles We con-
structed ensembles for the KDDCup 1999 dataset as
well as an image data set derived from the Amsterdam
Library of Object Images [18] (50.000 images, 1508 of
rare objects with 1−10 instances) using three strategies
to obtain diversity: “feature bagging”, where a subset of
dimensions is selected for each instance; LOF with dif-
ferent values of k on the full-dimensional dataset; and
combination of four different methods (LOF, LDOF,
kNN, and aggregate kNN). We did not include ABOD,
since its inverted score would be unfair to use without
regularization. We evaluated different methods for nor-
malizing and combining the scores into a single ranking,
and computed the ROC area under curve (AUC) value
for each combination. For comparison, we implemented
the methods of [17,34,38] (see Section 4).

Table 5 gives an overview of the results. Despite
the trivial mean operator used, the use of unified scores
produced excellent and stable results, in particular when
combining the results of different algorithms, and even
when the kNN methods did not work well on the ALOI
image data.

6 Conclusion

State-of-the-art outlier scores are not standardized and
often hard to interpret. Scores of objects from different
data sets and even scores of objects from the same
data set cannot be compared. In this paper, we
proposed a path to the unification of outlier models
by regularization and normalization aiming (i) at an
increased contrast between outlier scores vs. inlier scores
and (ii) at deriving a rough probability value for being
an outlier or not. Although we took the first step on
this path only, we demonstrated the impact of such a
procedure in reducing error-costs. We envision possible
applications of this unification in a competition scenario,
i.e., comparing different methods in order to select the
most appropriate one for a given application, as well
as a combination scenario, i.e., using different methods
complementary in order to combine their strengths
and alleviate their weaknesses. In the first scenario,
the improved possibilities of analyzing strengths and
weaknesses of different existing methods may facilitate
better direction of efforts in design and development of
new and better approaches to outlier detection. For the
latter scenario, we demonstrate the beneficial impact
of our approach in comparison to previous attempts

of building outlier ensembles. Future work could focus
on deriving comparable probability values for a broader
selection of methods, a better calibration, or on further
tuning the transformation functions towards optimal
contrast between outlier- and inlier-scores.
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