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1 Modelling in MiniZinc

The G12 project defines three closely related modelling languages:

• Zinc is a very high level modelling language; because of its expressive
power mapping Zinc models on to underlying solvers is an on-going
research problem and existing language support is experimental. We
do not discuss full Zinc further in this document.

• MiniZinc is a medium level modelling language that is comfortable
to work in and for which we do have (very nearly) full support.

• FlatZinc is a low level modelling language intended primarily as input
for compliant solvers which we hope will become a de facto standard.

The remainder of this document seeks to explain by example how to write
and evaluate models in MiniZinc. In what follows, FD stands for “finite
domain” and LP stands for “linear problem”. FD solvers are used for integer
problems while LP solvers are used for floating point problems.

1.1 Golomb Rulers (FD)

A Golomb ruler R is a set of integers such that all pairwise differences are
different — that is, ∀ distinct a, b, c, d ∈ R.(a−b) = (c−d) ⇒ (a, b) = (c, d).

Figure 1 shows a MiniZinc model of the problem (line numbers in the figure
are there for reference and should not be included in the model file) and
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1 % Golomb rulers.
2
3 include "globals.mzn";
4
5 int: n = 4;
6
7 array [1..n] of var 0..(n * n): mark;
8
9 constraint mark[1] = 0;
10 constraint forall (i in 1..(n - 1)) (mark[i] < mark[i + 1]);
11 constraint
12 all_different (i in 1..n, j in (i + 1)..n) (mark[j] - mark[i]);
13
14 solve minimize mark[n];
15
16 output ["golomb: ", show(mark)];

Figure 1: MiniZinc model for Golomb Rulers.

the output from evaluating it with the zinc interpreter. Let’s examine the
model in more detail.

Line 1 is a comment. Comments begin with % and extend to the end of the
line. Comments can occur anywhere in a model.

Line 3 includes the standard MiniZinc library file globals.mzn, which de-
fines various global constraints (such as all_different used on line 12). All
MiniZinc items that are not comments must be terminated with a semicolon.

Line 5 defines an integer parameter n with value 4; this is the number of
marks we wish our ruler to have.

Line 7 declares an array mark of n integer variables, indexed from 1 to n,
each in the range 0..(n * n). Each array item corresponds to the location
of a mark on our ruler.

Line 9 constrains the first mark to appear at position 0.

Line 10 constrains the mark array items to appear in strictly ascending
order.

Lines 11 and 12 use the all_different global constraint to ensure that
the difference between each pair of distinct marks on the ruler is unique.
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Line 14 specifies the problem goal: to find values for the mark ar-
ray such that the last is minimized (the other possible solve goals are
solve maximize mark[n]; or solve satisfy; which looks for any solu-
tion).

Line 16 specifies how to print a solution if one is found. The function show
converts its argument into a printable string. If a solution cannot be found
then No solution will be printed instead. Omitting the output item will
cause all of the variables in a model to be printed, one per line, if a solution
is found.

In order to evaluate a model using the G12 implementation of MiniZinc, we
must first convert that model into an equivalent FlatZinc model using the
MiniZinc-to-FlatZinc converter, mzn2fzn .

Assuming that the model lives in the file golomb.mzn (note that all files that
contain MiniZinc models must have the extension ”.mzn”), we can convert
it to FlatZinc as follows:

$ mzn2fzn golomb.fzn

If the model contains errors then mzn2fzn will report them, otherwise it will
output a FlatZinc version of golomb.mzn in the file golomb.fzn. (FlatZinc
files must have the extension ”.fzn”.)

We can then evaluate the model using a FlatZinc interpreter. The G12
FlatZinc interpreter is called flatzinc . It is invoked as follows:

$ flatzinc golomb.fzn

The output produced is:

[ 0, 1, 4, 6 ]

which, as required, has six unique differences: {1, 4, 6, 3, 5, 2}.

Syntactic sugar for arrays

The model uses convenient syntactic sugar for the forall and all_different
constraints. In fact, both of these constraints take a single array argument.
The form
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forall (i in 1..(n - 1)) (mark[i] < mark[i + 1]);

is a more readable version of

forall([mark[i] < mark[i + 1] | i in 1..(n - 1)]);

(which uses an array comprehension) which in turn is short for

forall([mark[1] < mark[2], mark[2] < mark[3], mark[3] < mark[4]]);

Observe that array values are written as comma separated sequences of
expressions, surrounded by brackets.

Similarly

all_different (i in 1..n, j in (i + 1)..n) (mark[j] - mark[i]);

is a more readable version of

all_different([mark[j] - mark[i] | i in 1..n, j in (i + 1)..n]);

which is short for

all_different([
mark[2] - mark[1], mark[3] - mark[1], mark[4] - mark[1],
mark[3] - mark[2], mark[2] - mark[2],
mark[4] - mark[3]]);

You can use the special syntactic sugar in any expression where a function
symbol is applied to a single array.

1.2 Sudoku (FD)

A Sudoku problem is a 3 × 3 grid of 3 × 3 subgrids. Each square must be
assigned a number in the range 1..9 such that the numbers in each row,
column, and subgrid are distinct.

Figure 1 shows a MiniZinc model of the problem (line numbers in the figure
are there for reference and should not be included in the model file) and
the output from evaluating it with the zinc interpreter. Let’s examine the
model in more detail.
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1 % Sudoku solver.
2
3 include "globals.mzn";
4
5 array [1..9, 1..9] of var 1..9: sq;
6
7 predicate row_diff(int: r) =
8 all_different (c in 1..9) (sq[r, c]);
9
10 predicate col_diff(int: c) =
11 all_different (r in 1..9) (sq[r, c]);
12
13 predicate subgrid_diff(int: r, int: c) =
14 all_different (i, j in 0..2) (sq[r + i, c + j]);
15
16 constraint forall (r in 1..9) (row_diff(r));
17 constraint forall (c in 1..9) (col_diff(c));
18 constraint forall (r, c in {1, 4, 7}) (subgrid_diff(r, c));
19
20 sq = [
21 _, _, _, _, _, _, _, _, _,
22 _, 6, 8, 4, _, 1, _, 7, _,
23 _, _, _, _, 8, 5, _, 3, _,
24 _, 2, 6, 8, _, 9, _, 4, _,
25 _, _, 7, _, _, _, 9, _, _,
26 _, 5, _, 1, _, 6, 3, 2, _,
27 _, 4, _, 6, 1, _, _, _, _,
28 _, 3, _, 2, _, 7, 6, 9, _,
29 _, _, _, _, _, _, _, _, _
30 ];
31
32 solve satisfy;
33
34 output ["sq = ", show(sq)];

Figure 2: MiniZinc model for a Sudoku problem.
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Line 3 includes globals.mzn which defines the all_different predicate.

Line 5 defines sq, a two dimensional array of squares, indexed by row and
column number respectively, of integer variables in the range 1..9.

Lines 7 and 8 define a predicate row_diff(r) which constrains the squares
in row r to be distinct. Lines 10 and 11 define col_diff for columns and
lines 13 and 14 define subgrid_diff for subgrids.

Lines 16 to 18 use the predicates to constrain the values in the puzzle.
Observe that the range for index variables r and c in line 18 is given as
the set {1, 4, 7} (set values are written as comma separated sequences
of expressions, surrounded by braces) the expression 1..9 of course being
shorthand for the set {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Lines 20 to 30 constrains the value of sq, with the underscores denoting
“don’t know” values. Note that even though sq is a two-dimensional array,
its value is given as a one-dimensional array in row-major order (literal
MiniZinc array values like this are always one-dimensional).

Line 32 tells the solver to search for any solution and halt.

Running the model we get the following solution (which has been tidied up
for visual effect):

$ zinc sudoku.mzn
sq =

[ 5, 9, 3, 7, 6, 2, 8, 1, 4,
2, 6, 8, 4, 3, 1, 5, 7, 9,
7, 1, 4, 9, 8, 5, 2, 3, 6,

3, 2, 6, 8, 5, 9, 1, 4, 7,
1, 8, 7, 3, 2, 4, 9, 6, 5,
4, 5, 9, 1, 7, 6, 3, 2, 8,

9, 4, 2, 6, 1, 8, 7, 5, 3,
8, 3, 5, 2, 4, 7, 6, 9, 1,
6, 7, 1, 5, 9, 3, 4, 8, 2 ];

1.3 Perfect squares (FD with conditional constraints)

We can define a perfect square x2 as one satisfying x2 =
∑

{y2 | y ∈ S}
where S is a finite set of natural numbers smaller than x.
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1 % Perfect squares.
2
3 int: n = 10; % Consider squares up to n*n.
4 array [0..n] of 0..n*n: sq = [y*y | y in 0..n];
5 array [0..n] of var 0..n: s; % Decreasing indices into sq.
6 var 0..n: x; % Compute sum equal to sq[x]
7 var 0..n: j; % from this many sub-squares.
8
9 constraint forall (i in 1..n) (s[i] > 0 -> s[i - 1] > s[i]);
10 constraint s[0] < x;
11 constraint sum (i in 0..n) (sq[s[i]]) = sq[x];
12 constraint s[j] > 0;
13
14 solve maximize j;
15
16 output [
17 "x = ", show(x), "\n",
18 "s = ", show(s)
19 ];

Figure 3: MiniZinc model for computing squares equal to the sum of distinct
smaller squares.
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Figure 3 shows a MiniZinc model for computing perfect squares. Let’s ex-
amine the model in more detail.

Line 3 fixes an upper bound n on the number of squares the model will
consider.

Line 4 defines a constant array sq containing the squares from 0 up to n*n
by means of an array comprehension.

Line 5 defines an array s of variables, each being an index into the array sq
(we are going to compute x2 =

∑
i ∈ 0..n sq[s[i]] — this is our encoding

of the set S).

Line 6 defines a variable x which is the index of sq containing our perfect
square (i.e., x2 =sq[x]).

Line 7 defines a variable j which is the cardinality of our set S summing
to sq[x].

Line 9 constrains the array of indices s to be a strictly decreasing sequence
followed by zeroes. The arrow -> denotes logical implication.

Line 10 requires the set S to be non-empty.

Line 11 constrains the sum of the squares indexed by s to be equal to
sq[x].

Line 12 constrains the members of S to be non-zero (sq[s[j]] is the small-
est member of S).

Line 14 requires the solver to find the largest set S given the bound n.

Evaluating the model we get:

x = 10
s = [ 7, 5, 4, 3, 1, 0, 0, 0, 0, 0, 0 ]

and indeed 102 = 72 + 52 + 42 + 32 + 12.



1 MODELLING IN MINIZINC 9

1 % Simple production planning example adapted from the OPL book.
2
3 set of int: products = 1..3; % We make 3 products.
4 set of int: resources = 1..2; % We use 2 kinds of resources.
5
6 % Demand, in-house cost, and outsourcing cost for each product:
7 array[products] of float: demand = [100.0, 200.0, 300.0];
8 array[products] of float: in_cost = [ 0.6, 0.8, 0.3];
9 array[products] of float: out_cost = [ 0.8, 0.9, 0.4];
10
11 % Resources of each kind needed to manufacture each product unit:
12 array[products, resources] of float: consumption = [ 0.5, 0.2,
13 0.4, 0.4,
14 0.3, 0.6 ];
15
16 % Current in-house stocks of each resource kind:
17 array[resources] of float: capacity = [20.0, 40.0];
18
19 % Variables: how much should be made in-house or outsourced:
20 array[products] of var float: in_house;
21 array[products] of var float: outsource;
22
23 % Production cannot be negative:
24 constraint forall (p in products) (in_house[p] >= 0.0);
25 constraint forall (p in products) (outsource[p] >= 0.0);
26
27 % In-house production cannot use more than resource stocks:
28 constraint forall (r in resources) (
29 sum (p in products) (consumption[p, r] * in_house[p]) <= capacity[r]
30 );
31
32 % Production must meet demand:
33 constraint forall (p in products) (
34 in_house[p] + outsource[p] >= demand[p]
35 );
36
37 % Goal: minimize costs:
38 solve minimize sum (p in products) (
39 in_cost[p] * in_house[p] + out_cost[p] * outsource[p]
40 );
41
42 output [
43 "in_house = ", show(in_house), "\n",
44 "outsource = ", show(outsource)
45 ];

Figure 4: MiniZinc model for a production planning problem.
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1.4 Production planning (LP)

Figure 4 shows a MiniZinc model for a production planning problem (line
numbers in the figure are there for reference and should not be included
in the model file). In this problem a company manufactures three kinds
of products (e.g., kinds of pasta) using two kinds of resources (e.g., eggs
and milk). In-house production of each product is limited by the resources
in stock. The model must decide how much of each product to make in-
house versus how much to outsource in order to meet expected demand and
minimize costs.

Let’s examine the model in more detail.

Lines 3 and 4 define two integer sets giving symbolic names to each product
and resource kind.

Lines 7 to 9 define arrays giving the expected demand, the in-house pro-
duction cost, and the outsourcing production cost for each product. Note
that we can use set expressions (products in this case) as the index sets for
arrays. Note also that in MiniZinc floating point constants must include a
fractional part: 42 is an int; 42.0 is a float.

Line 12 defines a two-dimensional array, indexed by product and resource
kind respectively, giving the resource requirements for in-house manufactur-
ing.

Line 17 defines an array giving the available stocks of each resource kind.

Lines 20 and 21 define arrays of problem variables for the amount of each
product to manufacture in-house and outsource respectively.

Lines 24 and 25 constrain the problem variables to be non-negative.

Lines 28 to 32 state that in-house production cannot use more than the
available resource stocks.

Lines 34 to 37 require that manufacturing plus outsourcing must meet
demand for each product.

Lines 40 to 42 specifies the objective function, namely to minimize the
cost of meeting the expected demand.
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1 % Contrived problem.
2
3 include "globals.mzn";
4
5 var 0..9: x;
6 var 0..9: y;
7 var 0..9: z;
8
9 constraint all_different([x, y, z]);
10 constraint y - 3 < x /\ x < y + 3;
11 constraint z - 3 < y /\ y < z + 3;
12
13 solve satisfy;
14
15 output ["x = ", show(x), "; ",
16 "y = ", show(y), "; ",
17 "z = ", show(z)];

Figure 5: Contrived MiniZinc model to illustrate search control.

Running the model we get

in_house = [ 40.0, 0.0, 0.0 ]
outsource = [ 60.0, 200.0, 300.0 ]

1.5 Controlling search

Consider the contrived problem model in figure 5 which states that x must
be within 3 of y, y must be within 3 of z, and all three variables must
be distinct in the range 0..9 (observe the use of the logical conjunction
operator /\ which isn’t strictly necessary — conjunctions can be split into
separate constraints — but does improve readability here).

The default search procedure produces x = 2; y = 0; z = 1 .

The search procedure can be changed in MiniZinc models by annotating the
solve goal. For example, with:

solve
:: int_search([x, y, z], "first_fail", "indomain_median", "complete")

satisfy;
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we get x = 5; y = 6; z = 7 .

The int_search annotation takes four arguments:
— an array of the variables affected by this annotation;
— a variable selection strategy;
— a variable domain reduction strategy; and
— a search strategy
respectively.

In the example annotation the "first_fail" variable selection strat-
egy always chooses the undecided variable with the smallest domain, the
"indomain_median" nondeterministically splits that variable’s domain in
half (so, for example, 0..9 reduces to 0..4 on one search branch and 5..9
on another), and the "complete" strategy guarantees not to omit solutions
from the search space.

Multiple annotations can appear and are carried out in the given order. For
example, with:

solve
:: int_search([x], "first_fail", "indomain_median", "complete")
:: int_search([y, z], "smallest", "indomain_max", "complete")

satisfy;

we get x = 5; y = 7; z = 9; .

[Other search annotations, float_search, bool_search, and set_search
are defined in the Zinc Specification, but are not yet implemented in zinc .]

Currently supported variable selection strategies for int search

The current implementation of zinc supports the following variable selec-
tion strategies for int_search:
- "first_fail" which chooses the (undecided) variable with the smallest
domain;
- "anti_first_fail" which chooses the variable with the largest domain;
- "smallest" which chooses the variable with the smallest lower bound;
- "largest" which chooses the variable with the largest upper bound; and
- "input_order" which chooses variables in the order specified in the array.
bound;
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Currently supported domain reduction strategies for int search

The following domain reduction strategies are supported:
- "indomain" which reduces a domain to a singleton value in an arbitrary
order;
- "indomain_min" which reduces a domain to a singleton value in an as-
cending order;
- "indomain_max" which reduces a domain to a singleton value in a descend-
ing order;
- "indomain_median" which splits a domain in half; and
- "indomain_split" which splits a domain about the mean of its lower and
upper bounds.

Currently supported search strategies for int search

Only the "complete" search strategy is currently supported.

2 Comments, suggestions, and bug reports

Bugs can reported via the G12 bug tracking system at bugs.g12.csse.unimelb.edu.au.

Comments, questions and suggestions should be sent to the G12 Users mail-
ing list. You can subscribe to the list by sending an e-mail containing the
word subscribe in the body to g12-users-request@csse.unimelb.edu.au.
Thereafter, mail may be sent to g12-users@csse.unimelb.edu.au.


