
DM865 – Spring 2019

Heuristics and Approximation Algorithms

Satisfiability

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

2

SAT Problem
Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

3

SAT Problem
Satisfiability problem in propositional logic

Does there exist a truth assignment satisfying all clauses?
Search for a satisfying assignment (or prove none exists)

3

Motivation

• SAT used to solve many other problems!

• Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal Control, Protocol Design,
Routing, Combinatorial problems, Equivalence Checking, etc.

• From 100 variables, 200 constraints (early 90s)
to 1,000,000 vars. and 20,000,000 cls. in 20 years.

4

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas
There are other types of logic: first-order logic, temporal logic, etc.

The proposition symbols x1, x2, etc. are sentences

If x is a sentence, ¬x is a sentence (negation)
If x1 and x2 are sentences, x1 ∧ x2 is a sentence (conjunction)
If x1 and x2 are sentences, x1 ∨ x2 is a sentence (disjunction)
If x1 and x2 are sentences, x1 → x2 is a sentence (implication)
If x1 and x2 are sentences, x1 ↔ x2 is a sentence (biconditional)

5

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol
E.g. x1 x2 x3

true true false
(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:
¬x is true iff x is false

x1 ∧ x2 is true iff x1 is true and x2 is true
x1 ∨ x2 is true iff x1 is true or x2 is true
x1 → x2 is true iff x1 is false or x2 is true

i.e., is false iff x1 is true and x2 is false
x1 ↔ x2 is true iff x1 → x2 is true and x2 → x1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
¬x1 ∧ (x2 ∨ x3) = true ∧ (false ∨ true)⇔ true ∧ true ⇔ true

6

Truth tables for connectives

P Q ¬P P ∧ Q P ∨ Q P→Q P↔Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

7

Logical equivalence

Two sentences are logically equivalent iff true in same models:
α ≡ β if and only if α |= β and β |= α

(α ∧ β) ≡ (β ∧ α) commutativity of ∧
(α ∨ β) ≡ (β ∨ α) commutativity of ∨

((α ∧ β) ∧ γ) ≡ (α ∧ (β ∧ γ)) associativity of ∧
((α ∨ β) ∨ γ) ≡ (α ∨ (β ∨ γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α→ β) ≡ (¬β → ¬α) contraposition
(α→ β) ≡ (¬α ∨ β) implication elimination
(α↔ β) ≡ ((α→ β) ∧ (β → α)) bicond. elimination
¬(α ∧ β) ≡ (¬α ∨ ¬β) De Morgan
¬(α ∨ β) ≡ (¬α ∧ ¬β) De Morgan

(α ∧ (β ∨ γ)) ≡ ((α ∧ β) ∨ (α ∧ γ)) distributivity of ∧ over ∨
(α ∨ (β ∧ γ)) ≡ ((α ∨ β) ∧ (α ∨ γ)) distributivity of ∨ over ∧

8

Validity and Satisfiability

A sentence is valid if it is true in all models,
e.g., True, A ∨ ¬A, A→ A, (A ∧ (A→ B))→ B

A sentence is satisfiable if it is true in some model
e.g., A ∨ B, C

A sentence is unsatisfiable if it is true in no models
e.g., A ∧ ¬A

9

Conjunctive Normal Form

Every sentence in Propositional Logic is logically equivalent to a conjunction of clauses:

• A formula is in conjunctive normal form (CNF) iff it is of the form

m∧
i=1

ki∨
j=1

lij = (l11 ∨ . . . ∨ l1k1) ∧ . . . ∧ (lm1 ∨ . . . ∨ lmkm)

where each literal lij is a propositional variable or its negation.

The disjunctions of literlas: ci = (li1 ∨ . . . ∨ liki) are called clauses.

• A formula is in k-CNF iff it is in CNF and all clauses contain exactly k literals (i.e., for all i ,
ki = k).

• In many cases, the restriction of SAT to CNF formulae is considered.
• For every propositional formula, there is an equivalent formula in 3-CNF.

10

Example:

F := ∧ (¬x2 ∨ x1)
∧ (¬x1 ∨ ¬x2 ∨ ¬x3)
∧ (x1 ∨ x2)
∧ (¬x4 ∨ x3)
∧ (¬x5 ∨ x3)

• F is in CNF.
• Is F satisfiable?
Yes, e.g., x1 := x2 := >, x3 := x4 := x5 := ⊥ is a model of F .

11

Conversion to CNF

x1 ↔ (x2 ∨ x3)

1. Eliminate ↔, replacing α↔ β with (α→ β) ∧ (β → α).

(x1 → (x2 ∨ x3)) ∧ ((x2 ∨ x3)→ x1)

2. Eliminate →, replacing α→ β with ¬α ∨ β.

(¬x1 ∨ x2 ∨ x3) ∧ (¬(x2 ∨ x3) ∨ x1)

3. Move ¬ inwards using de Morgan’s rules and double-negation:

(¬x1 ∨ x2 ∨ x3) ∧ ((¬x2 ∧ ¬x3) ∨ x1)

4. Apply distributivity law (∨ over ∧) and flatten:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ x1) ∧ (¬x3 ∨ x1)

12

SAT Problem

SAT Problem (decision problem, search variant):

• Given: Formula F in propositional logic
• Task: Find an assignment of truth values to variables in F that renders F true, or decide that
no such assignment exists.

SAT Problem: A simple instance

• Given: Formula F := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

• Task: Find an assignment of truth values to variables x1, x2 that renders F true, or decide
that no such assignment exists.

14

Special Cases

Not all instances are hard:

• Definite clauses: exactly one literal in the clause is positive. Eg:

¬β ∨ ¬γ ∨ α

• Horn clauses: at most one literal is positive.

Easy interpretation: α ∧ β → γ infers that ¬α ∨ ¬β ∨ γ

Inference is easy by forward checking, linear time

16

Max SAT

Definition ((Maximum) K -Satisfiability (SAT))

Input: A set X of variables, a collection C of disjunctive clauses of at most k literals, where a
literal is a variable or a negated variable in X .
k is a constant, k > 2.
Task: A truth assignment for X or a truth assignment that maximizes the number of clauses
satisfied.

MAX-SAT (optimization problem)

Which is the maximal number of clauses satisfiable in a propositional logic formula F?

17

Outline

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

18

DPLL algorithm

Davis, Putam, Logenmann & Loveland (DPLL) algorithm is a recursive depth-first enumeration of
possible models with the following elements:

1. Early termination:
a clause is true if any of its literals are true
a formula is false if any of its clauses are false, which occurs when all its literals are false

2. Pure literal heuristic:
pure literal is one that appears with same sign everywhere.
it can be assigned so that it makes the clauses true. Clauses already true can be ignored.

3. Unit clause heuristic
consider first unit clauses with just one literal or all literal but one already assigned. Generates
cascade effect (forward chaining)

19

DPLL algorithm

Function DPLL(C , L,M):
Data: C set of clauses; L set of literals; M model;
Result: true or false
if every clause in C is true in M then return true;
if some clause in C is false in M then return false;
(l , val)←FindPureLiteral(L,C ,M);
if l is non-null then return DPLL(C , L \ l ,M ∪ {l = val});
(l , val)←FindUnitClause(L,M);
if l is non-null then return DPLL(C , L \ l ,M ∪ {l = val});
l ←First(L); R ←Rest(L);
return DPLL(C ,R,M ∪ {l = true}) or

DPLL(C ,R,M ∪ {l = false})

20

Speedups

• Component analysis to find separable
problems

• Intelligent backtracking
• Random restarts
• Clever indexing (data structures)
• Variable value ordering

21

Variable selection heuristics

• Degree

• Based on the occurrences in the (reduced) formula

• Maximal Occurrence in clauses of Minimal Size (MOMS, Jeroslow-Wang)

• Variable State Independent Decaying Sum (VSIDS)

• original idea (zChaff): for each conflict, increase the score of involved variables by 1, half all
scores each 256 conflicts [MoskewiczMZZM2001]

• improvement (MiniSAT): for each conflict, increase the score of involved variables by δ and
increase δ := 1.05δ [EenSörensson2003]

23

Value selection heuristics

• Based on the occurrences in the (reduced) formula

• examples: Jeroslow-Wang, Maximal Occurrence in clauses of Minimal Size (MOMS), look-aheads

24

Outline

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

25

Pre-processing

Pre-processing rules: low polynimial time procedures to decrease the size of the problem instance.

Typically applied in cascade until no rule is effective anymore.

26

Examples in SAT

1. eliminate duplicate literals
2. eliminate tautologies: x1 ∨ ¬x1...

3. eliminate subsumed clauses
4. eliminate clauses with pure literals
5. eliminate unit clauses
6. unit propagation

27

Simple data structure for unit propagation

28

Maximum Weighted Satisfiability

Notation:

• 0-1 variables xj , j ∈ N = {1, 2, . . . , n},

• clauses Ci , i ∈ M = {1, 2, . . . ,m}, and weights wi (≥ 0), i ∈ M

• x̄j = 1− xj

• L =
⋃

j∈N{xj , x̄j} set of literals

• Ci ⊆ L for i ∈ M (e.g., Ci = {x1, x̄3, x8}).

• Task: maxx∈{0,1}n

∑
{wi | i ∈ M and Ci is satisfied in x}

1. design one or more construction heuristics for the problem
2. devise preprocessing rules, ie, polynomial time simplification rules
3. design one or more local search for the problem

29

Let’s take the case wi = 1 for all i ∈ M

• Assignment: x ∈ {0, 1}n

• Evaluation function: f (x) = # unsatisfied clauses
• Neighborhood: one-flip
• Pivoting rule: best neighbor

Naive approach: exahustive neighborhood examination in O(nmk) (k size of largest Ci)
A better approach:
• C(xj) = {i ∈ M | xj ∈ Ci} (i.e., clauses dependent on xj)
• L(xj) = {` ∈ N | ∃i ∈ M with x` ∈ Ci and xj ∈ Ci}
• f (x) = # unsatisfied clauses
• ∆(xj) = f (x)− f (x′), x′ = δ

xj
1E (x) (aka score of xj)

Initialize:
• compute f , score of each variable, and list unsat clauses in O(mk)

• init C(xj) for all variables
Examine Neighborhood
• choose the var with best score

Update:
• change the score of variables affected, that is, look in C(·) O(mk)

C (xj) Data Structure

32

Even better approach (though same asymptotic complexity):
 after the flip of xj only the score of variables in L(xj) that critically depend on xj actually changes

• Clause Ci is critically satisfied by a variable xj in x iff:
• xj is in Ci

• Ci is satisfied in x and flipping xj makes Ci unsatisfied
(e.g., 1 ∨0 ∨ 0 but not 1 ∨1 ∨ 0)

Keep a list of such clauses for each var

• xj is critically dependent on x` under x iff:
there exists Ci ∈ C(xj) ∩ C(x`) and such that flipping xj :

• Ci changes from satisfied to not satisfied or viceversa
• Ci changes from satisfied to critically satisfied by x` or viceversa

Initialize:
• compute score of variables;
• init C(xj) for all variables
• init status criticality for each clause (ie, count # of ones per clause)

Update:
change sign to score of xj
for all Ci in C(xj) where critically dependent vars are do

for all x` ∈ Ci do
update score x` depending on its critical status before flipping xj

Summary

1. SAT Problems

2. Dedicated Backtracking

3. Local Search for SAT

34

	SAT Problems
	Dedicated Backtracking
	Local Search for SAT

