DM865 – Spring 2019 Heuristics and Approximation Algorithms

Resource Constrained Project Scheduling

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

1. Resource Constrained Project Scheduling Model

2. Preprocessing

3. Heuristics

1. Resource Constrained Project Scheduling Model

2. Preprocessing

3. Heuristics

RCPSP

Resource Constrained Project Scheduling Model

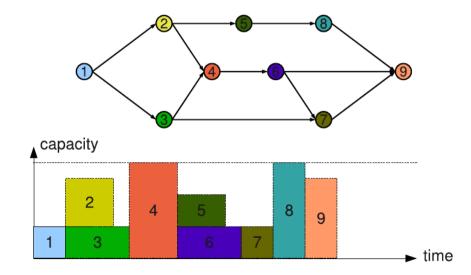
Given:

- activities (jobs) $j = 1, \ldots, n$
- renewable resources $i = 1, \ldots, m$
- amount of resources available R_i
- processing times p_j
- amount of resource used r_{ij}
- precedence constraints $j \rightarrow k$

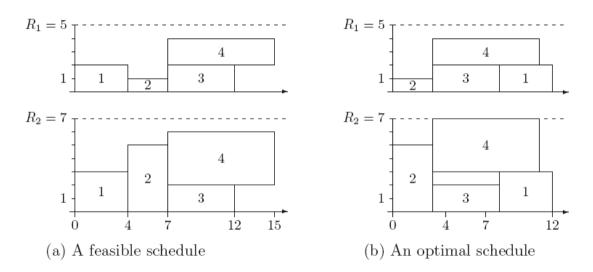
Further generalizations

- Time dependent resource profile $R_i(t)$ given by (t_i^{μ}, R_i^{μ}) where $0 = t_i^1 < t_i^2 < \ldots < t_i^{m_i} = T$ Disjunctive resource, if $R_k(t) = \{0, 1\}$; cumulative resource, otherwise
- Multiple modes for an activity *j* processing time and use of resource depends on its mode *m*: *p_{jm}*, *r_{jkm}*.

An Example



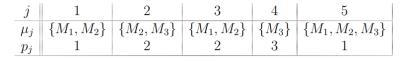
An Example

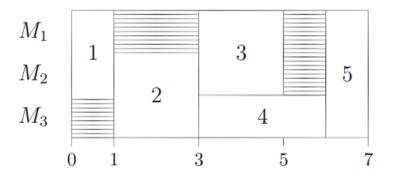


RCPSP Preprocessing Heuristics

Multi-processor Task Scheduling

RCPSP Preprocessing Heuristics





Equivalent to a RCPSP with r = m and $R_k = 1$ for k = 1..m

Assignment 1

Modeling

- A contractor has to complete *n* activities.
- The duration of activity *j* is *p_j*
- each activity requires a crew of size W_j .
- The activities are not subject to precedence constraints.
- The contractor has W workers at his disposal
- his objective is to complete all *n* activities in minimum time.

Assignment 2

- Exams in a college may have different duration.
- The exams have to be held in a gym with W seats.
- The enrollment in course j is W_j and
- all W_j students have to take the exam at the same time.
- The goal is to develop a timetable that schedules all n exams in minimum time.
- Consider both the cases in which each student has to attend a single exam as well as the situation in which a student can attend more than one exam.

Assignment 3

- In a basic high-school timetabling problem we are given m classes c_1, \ldots, c_m ,
- h teachers a_1, \ldots, a_h and
- T teaching periods t_1, \ldots, t_T .
- Furthermore, we have lectures $i = l_1, \ldots, l_n$.
- Associated with each lecture is a unique teacher and a unique class.
- A teacher *a_j* may be available only in certain teaching periods.
- The corresponding timetabling problem is to assign the lectures to the teaching periods such that
 - each class has at most one lecture in any time period
 - each teacher has at most one lecture in any time period,
 - each teacher has only to teach in time periods where he is available.

Assignment 4

- A set of jobs J_1, \ldots, J_g are to be processed by auditors A_1, \ldots, A_m .
- Job J_l consists of n_l tasks (l = 1, ..., g).
- There are precedence constraints $i_1 \rightarrow i_2$ between tasks i_1, i_2 of the same job.
- Each job J_l has a release time r_l , a due date d_l and a weight w_l .
- Each task must be processed by exactly one auditor. If task *i* is processed by auditor A_k, then its processing time is p_{ik}.
- Auditor A_k is available during disjoint time intervals $[s_k^{\nu}, l_k^{\nu}]$ ($\nu = 1, ..., m$) with $l_k^{\nu} < s_k^{\nu}$ for $\nu = 1, ..., m_k 1$.
- Furthermore, the total working time of A_k is bounded from below by H_k^- and from above by H_k^+ with $H_k^- \leq H_k^+$ (k = 1, ..., m).
- We have to find an assignment $\alpha(i)$ for each task $i = 1, \ldots, n := \sum_{l=1}^{g} n_l$ to an auditor $A_{\alpha(i)}$ such that
 - each task is processed without preemption in a time window of the assigned auditor
 - the total workload of A_k is bounded by H_k^- and H_k^k for k = 1, ..., m.
 - the precedence constraints are satisfied,
 - all tasks of J_l do not start before time r_l , and
 - the total weighted tardiness $\sum_{l=1}^{g} w_l T_l$ is minimized.

Mathematical Model

$$\begin{array}{l} \min \ \min_{j=1}^{n} \{S_{j} + p_{j}\} \\ \text{s.t.} \ S_{j} \geq S_{i} + p_{i}, \qquad j = 1, \dots, n, \forall (i, j) \in A \\ \sum_{j \in J(t)} r_{jk} \leq R_{k}, \qquad k = 1, \dots, m, t = 1 \dots, T \\ J(t) = \{j = 1, \dots, n \mid S_{j} \leq t \leq S_{j} + p_{j}\} \\ S_{j} \geq 0, \qquad j = 1, \dots, n \end{array}$$

1. Resource Constrained Project Scheduling Model

2. Preprocessing

3. Heuristics

Preprocessing: Temporal Analysis

 $S_i + p_i < S_i$

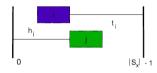
• Precedence network must be acyclic

Preprocessing: constraint propagation

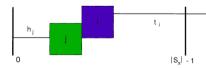
- 1. conjunctions $i \rightarrow j$ [precedence constrains]
- 2. parallelity constraints i || j[time windows $[r_j, d_j], [r_l, d_l]$ and $p_l + p_j > \max\{d_l, d_j\} - \min\{r_l, r_j\}$]
- 3. disjunctions i j[resource constraints: $r_{jk} + r_{lk} > R_k$] $S_i + p_i \le S_j$ or $S_j + p_j \le S_i$
- N. Strengthenings: symmetric triples, etc.

Let i, j be a pair of activities. A precedence relation is added between i and j if one of the following holds:

• $h_j + t_i \geq |S_x| - 1$



• $h_j + p_j + p_i + t_i > |S_x| - 1$ \land $\exists k = 1, ..., m : r_{ik} + r_{jk} > R_k$



Solutions

Task: Find a schedule indicating the starting time of each activity

- All solution methods restrict the search to feasible schedules, S, S'
- Types of schedules
 - Local left shift (LLS): $S \to S'$ with $S'_i < S_j$ and $S'_l = S_l$ for all $l \neq j$.
 - Global left shift (GLS): LLS passing through infeasible schedule
 - Semi active schedule: no LLS possible
 - Active schedule: no GLS possible
 - Non-delay schedule: no GLS and LLS possible even with preemption
- If regular objectives \implies exists an optimum which is active

Hence:

- Schedule not given by start times S_i
 - space too large $O(T^n)$
 - difficult to check feasibility
- Sequence (list, permutation) of activities $\pi = (j_1, \ldots, j_n)$
- π determines the order of activities to be passed to a schedule generation scheme

1. Resource Constrained Project Scheduling Model

2. Preprocessing

3. Heuristics

Schedule Generation Schemes

RCPSP Preprocessing Heuristics

Given a sequence of activity, SGS determine the starting times of each activity

Serial schedule generation scheme (SSGS)

n stages, S_{λ} scheduled jobs, E_{λ} eligible jobs

Step 1 Select next from E_{λ} and schedule at earliest.

```
Step 2 Update E_{\lambda} and R_k(\tau).
If E_{\lambda} is empty then STOP,
else go to Step 1.
```

Procedure Serial Schedule Generation Scheme 1. Let E_1 be the set of all activities without predecessor; 2. FOR $\lambda := 1$ TO n DO Choose an activity $i \in E_{\lambda}$: З. 4. $t := \max_{i \to i \in A} \{S_i + p_i\};$ 5. WHILE a resource k with $r_{ik} > R_k(\tau)$ for some time $\tau \in \{t+1,\ldots,t+p_i\}$ exists DO Calculate the smallest time $t^{\mu}_{\mu} > t$ such that j 6. can be scheduled in the interval $[t_k^{\mu}, t_k^{\mu} + p_j]$ if only resource k is considered and set $t := t_k^{\mu}$; 7 ENDWHILE Schedule j in the interval $[S_i, C_i] := [t, t + p_i];$ 8. 9 Update the current resource profiles by setting $R_k(\tau) := R_k(\tau) - r_{ik}$ for $k = 1, \ldots, r$; $\tau \in \{t + 1, \ldots, t + p_i\}$; 10. Let $E_{\lambda+1} := E_{\lambda} \setminus \{j\}$ and add to $E_{\lambda+1}$ all successors $i \notin E_{\lambda}$ of j for which all predecessors are scheduled; 11 ENDFOR

Parallel schedule generation scheme (PSGS) (Time sweep)

stage λ at time t_{λ}

 S_{λ} (finished activities), A_{λ} (activities not yet finished), E_{λ} (eligible activities)

Step 1 In each stage select maximal resource-feasible subset of eligible activities in E_{λ} and schedule it at t_{λ} .

```
Step 2 Update E_{\lambda}, A_{\lambda} and R_k(\tau).

If E_{\lambda} is empty then STOP,

else move to t_{\lambda+1} = \min \left\{ \min_{\substack{j \in A_{\lambda} \\ i \in m_k}} C_j, \min_{\substack{k=1,...,r \\ i \in m_k}} t_i^{\mu} \right\}

and go to Step 1.
```

- If constant resource, it generates non-delay schedules
- Search space of PSGS is smaller than SSGS

Procedure Parallel Schedule Generation Scheme 1. $\lambda := 1$: $t_1 := 0$: $A_1 := \emptyset$: 2. Let E_1 be the set of all activities *i* without predecessor and $r_{ik} < R_k(\tau)$ for k = 1, ..., r and all $\tau \in \{1, ..., p_i\}$; 3. WHILE not all activities are scheduled DO WHILE $E_{\lambda} \neq \emptyset$ DO 4. 5. Choose an activity $i \in E_{\lambda}$: 6. Schedule *j* in the interval $[S_i, C_i] := [t_{\lambda}, t_{\lambda} + p_i];$ 7. Update the current resource profiles by setting $R_k(\tau) := R_k(\tau) - r_{ik}$ for $k = 1, \dots, r$; $\tau \in \{t_{\lambda} + 1, \dots, t_{\lambda} + p_i\}$; 8. Add j to A_{λ} and update the set E_{λ} by eliminating j and all activities $i \in E_{\lambda}$ with $r_{ik} > R_k(\tau)$ for some resource k and a time $\tau \in \{t_{\lambda} + 1, t_{\lambda} + p_i\};$ 9 ENDWHILE Let $t_{\lambda+1}$ be the minimum of the smallest value $t_k^{\mu} > t_{\lambda}$ 10. and $\min_{i \in A_{\lambda}} \{S_i + p_i\};$ 11. $\lambda := \lambda + 1$: 12. Calculate the new sets A_{λ} and E_{λ} : 13. ENDWHILE

Possible uses:

- Forward
- Backward
- Bidirectional
- Forward-backward improvement (justification techniques)

[V. Valls, F. Ballestín and S. Quintanilla. Justification and RCPSP: A technique that pays. EJOR, 165:375-386, 2005]

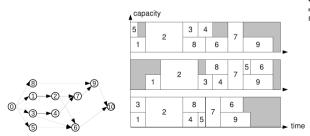


Fig. from [D. Debels, R. Leus, and M. Vanhoucke. A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. EJOR, 169(2):638Â653, 2006]

Dispatching Rules

Determines the sequence of activities to pass to the schedule generation scheme

- activity based
- network based
- path based
- resource based

Static vs Dynamic

All typical neighborhood operators can be used:

- Swap
- Interchange
- Insert

reduced to only those moves compatible with precedence constraints

Recombination operator:

- One point crossover
- Two point crossover
- Uniform crossover

Implementations compatible with precedence constraints

Ant Colony

Ant algorithm RCPSP 1. REPEAT FOR k := 1 TO m DO 2. 3. FOR i := 1 TO n DO 4. Choose an unscheduled eligible activity $j \in V$ for position *i* with probability $p_{ij}^k = rac{[au_{ij}]^lpha [\eta_{ij}]^eta}{\sum [au_{il}]^lpha [\eta_{il}]^eta}$; 5. ENDFOR 6. ENDFOR Calculate the makespans C^k of the schedules 7. constructed by the ants $k = 1, \ldots, m$; Determine the best makespan $C^* = \min_{k=1}^m \{C^k\}$ and a 8. corresponding list L^* ; FOR ALL activities $j \in V$ and their corresponding 9. positions i in L^* DO $\tau_{ij} := (1 - \varrho)\tau_{ij} + \varrho \frac{1}{2C^*};$ 10. 11. UNTIL a stopping condition is satisfied